Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wilder Tanz im Schwert des Orion

12.09.2012
Der Orion ist eines der hellsten Sternbilder. In seinem Zentrum befindet sich der Orionnebel, der ein Ort aktiver Sternentstehung ist.

Dort tanzen die Sterne deutlich schneller umeinander, als man aufgrund der sichtbaren Masse erwarten würde. Astrophysiker der Universität Bonn haben zusammen mit ihren Kollegen der Karls-Universität Prag (Tschechien) und der University of Queensland in Brisbane (Australien) dieses Rätsel gelöst.


Gesamtbild des Orion Nebels mit dem Sternhaufen im Zentrum: Das mutmaßliche Schwarze Loch wäre genau zwischen den vier hellen Sternen, welche das Zentrum des Sternhaufens markieren. Dies sind die Trapezsterne des Orionnebelhaufens.

(c) Foto: NASA/ESA/Hubble Space Telescope


Der Orionnebelsternhaufen als Aufnahme des ESO-Observatoriums: Im Infraroten können Astronomen durch die Wolke sehen und die Tausenden lichtschwachen jungen Sterne sichtbar machen. Das Trapez ist im Zentrum der Aufnahme erkennbar. Zwischen diesen vier hellen Sternen würde sich das mutmaßliche Schwarze Loch befinden.

(c) ESO/M.McCaughrean et al. (AIP)

Ihre Berechnungen zeigen, dass ein schweres Schwarzes Loch im Zentrum des Orionhaufens der Grund sein könnte. Die Arbeit wird nun im renommierten Fachjournal „The Astrophysical Journal“ erscheinen.

Der zentrale Sternhaufen im Orionnebel ist etwa 1.300 Lichtjahre von uns entfernt und hat einen Durchmesser von einigen Lichtjahren. Er enthält etwa 5.000 junge Sterne. Beobachtungen zeigen, dass sich dieser Haufen erst vor etwa ein oder zwei Millionen Jahren gebildet hat. „Die Sterne nahe des Zentrums im sogenannten Trapez des Haufens tanzen schneller umeinander, als man aufgrund der sichtbaren Materie erwarten würde“, stellt Prof. Dr. Pavel Kroupa vom Argelander-Institut für Astronomie der Universität Bonn fest.

„Das zentrale Trapez müsste sich deshalb eigentlich auflösen.“ Trotz des Alters der Sternengruppe ist das bislang aber nicht geschehen. „Die Verteilung der Masse der Sterne ist ebenfalls sehr ungewöhnlich“, berichtet der Astrophysiker der Universität Bonn weiter. Im Vergleich zur Zahl der Sterne mit niedriger Masse gebe es zu wenig schwere Sterne. Welche geheimnisvolle Kraft hält die eigentlich auseinanderdriftenden Sterne zusammen? Die Wissenschaftler vermuten, dass es im Sternhaufen des Orionnebels irgendeine unsichtbare Materie geben könnte, die wie eine Art Kitt wirkt.

Die Wissenschaftler simulierten die Bildung des Orionhaufens

Um die Bildung des Orionhaufens besser verstehen zu können, simulierten die Wissenschaftler daher seine Entstehung aus einer Molekülwolke im Computer. Das Team ging dabei von einer dichten Gaswolke mit einigen Tausend Sonnenmassen Gewicht aus, die ein Gemisch aus schweren und leichten Sternen enthielt. „Wir haben hierfür eine neue Methode entwickelt, um die Wechselwirkung des Gases mit der Strahlung der sich bildenden schweren Sterne zu berechnen. Das Gas in der Nähe der Sterne wird aufgeheizt, und damit steigt der Druck und das Gas expandiert explosionsartig aus dem jungen Haufen“, betont Dr. Ladislav Subr von der Karls-Universität Prag. Um die Komplexität dieses Systems nachzubilden, benutzten sie einen Computercode als Grundlage, der von Sverre Aarseth in Cambridge in mehreren Jahrzehnten Programmierarbeit entwickelt wurde.

Massereiche Sterne verwandelten sich in ein Schwarzes Loch

Die Astronomen berechneten die Entwicklung der schweren Sterne im Orionhaufen und untersuchten außerdem ihre Kollisionen untereinander. „Die Berechnungen zeigen, wie das Gas aus dem Haufen getrieben wurde und der Haufen allmählich expandierte“, beschreibt Dr. Holger Baumgardt von der University of Queensland in Brisbane (Australien). Die schweren Sterne wanderten demnach ins Haufenzentrum, wo viele von ihnen heraus geschleudert wurden, während andere miteinander kollidierten. „Im Zentrum des Haufens entstand oftmals ein sehr massereicher Stern, der sich am Ende seiner Lebenszeit in ein schweres Schwarzes Loch verwandelte, welches bis zu einige hundert Sonnenmassen wog“, berichtet Dr. Subr.

Berechnungen erklären die Eigenschaften des Orionhaufens

In der Nähe eines solchen schweren Schwarzen Lochs ist die Gravitation extrem stark – so stark, dass nicht einmal Licht diesen Bereich verlassen kann. „Das Schwarze Loch erklärt insbesondere die geringe Anzahl schwerer Sterne, die noch im Haufen vorhanden ist, und warum die Sterne im Zentrum eine so hohe Geschwindigkeit besitzen“, stellt Prof. Kroupa fest. „Mit unseren Berechnungen können wir nahezu alle Eigenschaften des Orionhaufens erklären.“ Das Schwarze Loch lässt sich nicht direkt beobachten. Allerdings deuten die Simulationen darauf hin, dass es Teil eines kompakten Doppelsternsystems ist. Im Orionhaufen würde dann der Begleiter des jeweiligen Doppelsterns in periodischen Abständen nahe am Schwarzen Loch vorbeifliegen und dabei Gas auf es stürzen lassen. „In diesem Fall würde das Schwarze Loch als helle Röntgenquelle am Himmel erscheinen“, sagt Prof. Kroupa. Damit kann die Existenz des Schwarzen Loches mit Beobachtungen nachgeprüft werden.
Falls tatsächlich ein schweres Schwarzes Loch im Orionhaufen vorhanden ist, würde dies das Verständnis der Wissenschaftler über die Bildung dieser Objekte revolutionieren. „Ein Schwarzes Loch im Zentrum des Orionnebels würde auch eine einmalige Chance für das Studium dieser Objekte darstellen“, sagt der Astrophysiker der Universität Bonn. Der Orionnebel wird daher auch in Zukunft ein intensiv untersuchtes Himmelsobjekt bleiben.

Publikation: Catch me if you can: is there a runaway-mass black hole in the Orion Nebula Cluster? „The Astrophysical Journal“, DOI: 10.1088/0004-637X/757/1/37

Kontakt:

Prof. Dr. Pavel Kroupa
Argelander-Institut für Astronomie
der Universität Bonn
Tel. 0228/736140 oder 733655 oder 0177/9566127
E-Mail: pavel@astro.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de
http://arxiv.org/abs/1209.2114

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sie werden so schnell groß: Massereiche Scheibengalaxien entstanden außergewöhnlich früh in der kosmischen Geschichte
20.05.2020 | Max-Planck-Institut für Astronomie

nachricht ESO-Teleskop sieht Anzeichen für Geburt eines Planeten
20.05.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: Schnüffel-Roboter als Katastrophenhelfer

Wo Menschenleben gefährdet sind, kommen künftig neuartige Roboter zum Einsatz, die an der TU Dresden entwickelt werden

Wissenschaftler an der TU Dresden arbeiten seit Juni 2019 an künstlichen Helfern, die in einem Katastrophengebiet Gefahren erkennen, beseitigen und somit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Techniker Krankenkasse, EuPD Research und Handelsblatt starten Bewerbung für die Sonderpreise "Gesunde Hochschule" im Rahmen des Corporate Health Award 2020

22.05.2020 | Förderungen Preise

Werkstattbericht #1: Head Mounted Displays (HMDs) – Schwerpunktpositionen und Drehmomente

22.05.2020 | Informationstechnologie

Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt

22.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics