Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schwer sind Neutronensterne?

10.01.2018

Astrophysiker der Goethe-Universität finden neue Obergrenze für die Masse von Neutronensternen heraus: Sie darf nicht größer als 2,16 Sonnenmassen sein.

Seit der Entdeckung von Neutronensternen in den 1960er Jahren fragen sich Wissenschaftler, wie schwer diese massereichen Sterne werden können? Im Unterschied zu schwarzen Löchern können sie nicht beliebig viel Masse zulegen; wird eine bestimmte Massengrenze überschritten, gibt es im Universum keine physikalische Kraft mehr, die der enormen Gravitation entgegenwirken kann. Astrophysikern der Goethe-Universität Frankfurt ist es nun erstmals gelungen, eine strenge obere Grenze für diese maximale Masse von Neutronensternen zu berechnen.


Gravitationswellenemission während einer Neutronensternkollision.

AK Rezzolla, Goethe-Universität

Mit einem Radius von ungefähr zwölf Kilometern und einer Masse, die doppelt so groß werden kann wie die der Sonne, zählen Neutronensterne zu den dichtesten Objekten im Universum. Ihre Gravitationsfelder sind mit denen von schwarzen Löchern vergleichbar.

Während die meisten Neutronensterne eine Masse von ca. 1,4 Sonnenmassen haben, sind den Wissenschaftlern auch sehr massive Exemplare bekannt wie der Pulsar PSR J0348+0432, der es auf 2,01 Sonnenmassen bringt.

Die Dichte dieser Sterne ist gigantisch: Sie entspricht der Masse des gesamten Himalaya-Gebirges, komprimiert in einem bayrischen Maßkrug. Es gibt jedoch Hinweise dafür, dass ein Neutronenstern, dessen Maximalmasse sich derjenigen eines schwarzen Lochs nähert, kollabieren würde, sobald man ihm auch nur ein einziges Neutron hinzufügt.

Physiker Prof. Luciano Rezzolla, Senior Fellow des Frankfurt Institute for Advanced Studies (FIAS) und Professor für theoretische Astrophysik an der Goethe-Universität, löste nun zusammen mit seinen Studenten Elias Most und Lukas Weih dieses seit 40 Jahren erforschte Problem: Innerhalb einer Genauigkeit von wenigen Prozent kann die Maximalmasse von nicht-rotierenden Neutronensternen nicht größer als 2,16 Sonnenmassen sein.

Die Grundlage für dieses Ergebnis bildete der vor ein paar Jahren in Frankfurt erarbeitete Ansatz „universelle Beziehungen“ (https://aktuelles.uni-frankfurt.de/menschen/wann-kollabiert-ein-rotierender-neut...). Die Existenz „universellen Beziehungen“ impliziert, dass praktisch alle Neutronensterne „gleich aussehen“, so dass ihre Eigenschaften durch dimensionslose Größen ausgedrückt werden können. Diese Größen kombinierten die Wissenschaftler mit den Daten der Gravitationswellen und des darauf folgenden elektromagnetischen Signale (Kilonova), die im letzten Jahr während der Beobachtung von zwei verschmelzenden Neutronensternen durch das LIGO Experiment gewonnen wurden.

Das machte die Berechnungen deutlich einfacher, da diese unabhängig von der zugrunde liegenden Zustandsgleichung sind. Die Zustandsgleichung ist ein theoretisches Modell für die Beschreibung von dichter Materie innerhalb des Sterns und enthält Informationen über die Zusammensetzung in verschiedenen Tiefen innerhalb des Sterns. Folglich war die Existenz einer solchen universellen Beziehung essentiell, um die neue maximale Masse bestimmen zu können.

Dieses Resultat ist ein gutes Beispiel für das Zusammenspiel zwischen theoretischer und experimenteller Forschung. „Das Schöne an theoretischen Studien ist, dass sie Vorhersagen treffen können. Die Theorie ist aber zwingend auf Experimente angewiesen, um einige ihrer Unsicherheiten zu minimieren“, sagt Prof. Rezzolla. „Es ist gerade daher so erstaunlich, dass uns die Beobachtung einer einzigen Neutronensternkollision, die sich Millionen von Lichtjahren entfernt ereignet hat, in Kombination mit theoretisch gefundenen universellen Beziehungen ermöglicht hat, dieses Rätsels, über das schon so lange spekuliert worden ist, zu lösen.“

Die Ergebnisse der Studie wurden als Letter in „The Astrophysical Journal“ veröffentlicht. Einige Tage danach bestätigten auch Arbeitsgruppen aus Japan und den USA die Ergebnisse, obwohl sie bis dahin andere unabhängige Ansätze verwendeten.

Es ist wahrscheinlich, dass künftig mittels Gravitationswellenastronomie mehrere solcher Verschmelzungsereignisse beobachtet werden, sowohl in Form von Gravitationswellen als auch in traditionelleren elektromagnetischen Frequenzspektren. Dadurch lassen sich womöglich die Unsicherheiten in der maximalen Masse weiter reduzieren und somit auch das Verständnis von Materie unter extremen Bedingungen verbessern. Diese wird in modernen Teilchenbeschleunigern wie am CERN in der Schweiz oder bei FAIR in Deutschland simuliert.

Publikation: Luciano Rezzolla, Elias R. Most, Lukas R. Weih: Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars, The Astrophysical Journal Letters, Volume 852, Number 2, http://iopscience.iop.org/article/10.3847/2041-8213/aaa401, DOI: 10.3847/2041-8213/aaa401

Ein Bild zum Download finden Sie unter: www.uni-frankfurt.de/69863080

Bildtext: Gravitationswellenemission während einer Neutronensternkollision
Informationen: Prof. Luciano Rezzolla, Institut für Theoretische Physik, Campus Riedberg, Telefon: (069) 798 47871, rezzolla(at)th.physik.uni-frankfurt.de
Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main (siehe auch www.uni-frankfurt.de/59086401/rhein-main-allianz ). Internet: www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Katharina Frerichs, Abteilung PR & und Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Telefon 069 798-13001, E-Mail k.frerichs@em.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Womit werden wir morgen kühlen?
16.09.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Neues Limit für Neutrinomasse
16.09.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Womit werden wir morgen kühlen?

Wissenschaftler bewerten das Potenzial von Werkstoffen für die magnetische Kühlung

Für das Jahr 2060 erwarten Zukunftsforscher einen Paradigmenwechsel beim globalen Energiekonsum: Erstmals wird die Menschheit mehr Energie zum Kühlen aufwenden...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Meilensteine auf dem Weg zur Atomkern-Uhr

Zwei Forschungsteams gelang es gleichzeitig, den lang gesuchten Kern-Übergang von Thorium zu messen, der extrem präzise Atomkern-Uhren ermöglicht. Die TU Wien ist an beiden beteiligt.

Wenn man die exakteste Uhr der Welt bauen möchte, braucht man einen Taktgeber, der sehr oft und extrem präzise tickt. In einer Atomuhr nutzt man dafür die...

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Technomer 2019 - Kunststofftechniker treffen sich in Chemnitz

16.09.2019 | Veranstaltungen

„Highlights der Physik“ eröffnet

16.09.2019 | Veranstaltungen

Die Digitalisierung verändert die Medizin

13.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Probenhalter für die Proteinkristallographie

16.09.2019 | Biowissenschaften Chemie

Warum die Erdatmosphäre viel Sauerstoff enthält

16.09.2019 | Geowissenschaften

Wissenschaftler erforschen Produktentstehungsprozesse in neuem Innovationslabor

16.09.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics