Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie schwer sind Neutronensterne?

10.01.2018

Astrophysiker der Goethe-Universität finden neue Obergrenze für die Masse von Neutronensternen heraus: Sie darf nicht größer als 2,16 Sonnenmassen sein.

Seit der Entdeckung von Neutronensternen in den 1960er Jahren fragen sich Wissenschaftler, wie schwer diese massereichen Sterne werden können? Im Unterschied zu schwarzen Löchern können sie nicht beliebig viel Masse zulegen; wird eine bestimmte Massengrenze überschritten, gibt es im Universum keine physikalische Kraft mehr, die der enormen Gravitation entgegenwirken kann. Astrophysikern der Goethe-Universität Frankfurt ist es nun erstmals gelungen, eine strenge obere Grenze für diese maximale Masse von Neutronensternen zu berechnen.


Gravitationswellenemission während einer Neutronensternkollision.

AK Rezzolla, Goethe-Universität

Mit einem Radius von ungefähr zwölf Kilometern und einer Masse, die doppelt so groß werden kann wie die der Sonne, zählen Neutronensterne zu den dichtesten Objekten im Universum. Ihre Gravitationsfelder sind mit denen von schwarzen Löchern vergleichbar.

Während die meisten Neutronensterne eine Masse von ca. 1,4 Sonnenmassen haben, sind den Wissenschaftlern auch sehr massive Exemplare bekannt wie der Pulsar PSR J0348+0432, der es auf 2,01 Sonnenmassen bringt.

Die Dichte dieser Sterne ist gigantisch: Sie entspricht der Masse des gesamten Himalaya-Gebirges, komprimiert in einem bayrischen Maßkrug. Es gibt jedoch Hinweise dafür, dass ein Neutronenstern, dessen Maximalmasse sich derjenigen eines schwarzen Lochs nähert, kollabieren würde, sobald man ihm auch nur ein einziges Neutron hinzufügt.

Physiker Prof. Luciano Rezzolla, Senior Fellow des Frankfurt Institute for Advanced Studies (FIAS) und Professor für theoretische Astrophysik an der Goethe-Universität, löste nun zusammen mit seinen Studenten Elias Most und Lukas Weih dieses seit 40 Jahren erforschte Problem: Innerhalb einer Genauigkeit von wenigen Prozent kann die Maximalmasse von nicht-rotierenden Neutronensternen nicht größer als 2,16 Sonnenmassen sein.

Die Grundlage für dieses Ergebnis bildete der vor ein paar Jahren in Frankfurt erarbeitete Ansatz „universelle Beziehungen“ (https://aktuelles.uni-frankfurt.de/menschen/wann-kollabiert-ein-rotierender-neut...). Die Existenz „universellen Beziehungen“ impliziert, dass praktisch alle Neutronensterne „gleich aussehen“, so dass ihre Eigenschaften durch dimensionslose Größen ausgedrückt werden können. Diese Größen kombinierten die Wissenschaftler mit den Daten der Gravitationswellen und des darauf folgenden elektromagnetischen Signale (Kilonova), die im letzten Jahr während der Beobachtung von zwei verschmelzenden Neutronensternen durch das LIGO Experiment gewonnen wurden.

Das machte die Berechnungen deutlich einfacher, da diese unabhängig von der zugrunde liegenden Zustandsgleichung sind. Die Zustandsgleichung ist ein theoretisches Modell für die Beschreibung von dichter Materie innerhalb des Sterns und enthält Informationen über die Zusammensetzung in verschiedenen Tiefen innerhalb des Sterns. Folglich war die Existenz einer solchen universellen Beziehung essentiell, um die neue maximale Masse bestimmen zu können.

Dieses Resultat ist ein gutes Beispiel für das Zusammenspiel zwischen theoretischer und experimenteller Forschung. „Das Schöne an theoretischen Studien ist, dass sie Vorhersagen treffen können. Die Theorie ist aber zwingend auf Experimente angewiesen, um einige ihrer Unsicherheiten zu minimieren“, sagt Prof. Rezzolla. „Es ist gerade daher so erstaunlich, dass uns die Beobachtung einer einzigen Neutronensternkollision, die sich Millionen von Lichtjahren entfernt ereignet hat, in Kombination mit theoretisch gefundenen universellen Beziehungen ermöglicht hat, dieses Rätsels, über das schon so lange spekuliert worden ist, zu lösen.“

Die Ergebnisse der Studie wurden als Letter in „The Astrophysical Journal“ veröffentlicht. Einige Tage danach bestätigten auch Arbeitsgruppen aus Japan und den USA die Ergebnisse, obwohl sie bis dahin andere unabhängige Ansätze verwendeten.

Es ist wahrscheinlich, dass künftig mittels Gravitationswellenastronomie mehrere solcher Verschmelzungsereignisse beobachtet werden, sowohl in Form von Gravitationswellen als auch in traditionelleren elektromagnetischen Frequenzspektren. Dadurch lassen sich womöglich die Unsicherheiten in der maximalen Masse weiter reduzieren und somit auch das Verständnis von Materie unter extremen Bedingungen verbessern. Diese wird in modernen Teilchenbeschleunigern wie am CERN in der Schweiz oder bei FAIR in Deutschland simuliert.

Publikation: Luciano Rezzolla, Elias R. Most, Lukas R. Weih: Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars, The Astrophysical Journal Letters, Volume 852, Number 2, http://iopscience.iop.org/article/10.3847/2041-8213/aaa401, DOI: 10.3847/2041-8213/aaa401

Ein Bild zum Download finden Sie unter: www.uni-frankfurt.de/69863080

Bildtext: Gravitationswellenemission während einer Neutronensternkollision
Informationen: Prof. Luciano Rezzolla, Institut für Theoretische Physik, Campus Riedberg, Telefon: (069) 798 47871, rezzolla(at)th.physik.uni-frankfurt.de
Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main (siehe auch www.uni-frankfurt.de/59086401/rhein-main-allianz ). Internet: www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Katharina Frerichs, Abteilung PR & und Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Telefon 069 798-13001, E-Mail k.frerichs@em.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuer Quantenzustand nachgewiesen
31.03.2020 | Technische Universität Braunschweig

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Architektur statt Antibiotika

31.03.2020 | Architektur Bauwesen

Thermopiles für berührungslose Temperaturmessung beim Menschen

31.03.2020 | Medizintechnik

Die Klügere gibt nach – Hochschule Bremen entwickelt biologisch inspirierte Tauchdrohne

31.03.2020 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics