Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie man Schallwellen durchs Labyrinth lenkt

03.07.2018

Eine Wellen-Manipulationstechnik der TU Wien wurde nun erstmal im Experiment getestet: Schallwellen lassen sich damit mühelos durch komplizierte Strukturen leiten.

Ständig haben wir es mit Wellen zu tun, die auf komplizierte Weise abgelenkt werden: Ein Lichtstrahl fällt durch ein Glas Milch und wird in alle Richtungen gestreut. Elektromagnetische Wellen vom Handymasten werden gestreut oder absorbiert, sodass wir uns in Innenräumen über schlechten Empfang ärgern.


Durch dieses Röhrensystem werden die Schallwellen geleitet.

Foto: Etienne Rivet, EPF Lausanne


Andre Brandstötter (l) und Stefan Rotter

TU Wien

An der TU Wien entwickelt man Methoden, Wellen gezielt so zu manipulieren, dass sie sich praktisch ungestört fortbewegen können. In einer Kooperation mit einer Forschungsgruppe der École polytechnique fédérale de Lausanne (EPFL) und der Universität Kreta wurde diese Methode nun im Experiment umgesetzt.

Mit präzise gesteuerten Lautsprechern gelang es, eine Schallwelle durch ein Rohr mit diversen Hindernissen zu schicken. Langfristig könnten solche Technologien dazu führen, Lichtwellen zu manipulieren und Objekte unsichtbar zu machen.

Licht oder Schall – auf die Welle kommt es an

Um das Konzept für verlustfreien Wellentransport zu testen, entschied man sich für Schallwellen. „Unsere Technik lässt sich grundsätzlich auf jede Art von Welle anwenden“, sagt Prof. Stefan Rotter vom Institut für Theoretische Physik der TU Wien.

„Mathematisch gesehen spielt es keine Rolle, ob es sich um Lichtwellen, Schallwellen oder quantenphysikalische Materiewellen handelt – aber in der Akustik sind die Experimente besonders anschaulich durchzuführen.“

Um die Welle auf genau die richtige Weise zu manipulieren, muss man an bestimmten Orten Energie zuführen oder abziehen. Das gelingt mit speziellen Lautsprechern, die entlang eines meterlangen Schallrohrs angebracht sind.

„Die Lautsprecher sind allerdings nicht dazu da, um die ursprüngliche Schallwelle auf der anderen Seite des Rohres einfach zu reproduzieren - das wäre zu einfach“, erklärt Andre Brandstötter, ein Ko-Autor der Studie und Doktorand in der Gruppe von Stefan Rotter. „Es geht darum, die Schallwelle Punkt für Punkt zu manipulieren und sie gewissermaßen durch das Rohr hindurch zu lotsen, sodass sie an bestimmten Stellen im Rohr immer genau dieselbe Stärke hat.“

Die Lautsprecher werden so gesteuert, dass die Welle lokal verstärkt oder abgeschwächt wird. „Dadurch können wir der komplizierten Streuung entgegenwirken, die sonst unvermeidlich wäre, wenn die Welle auf ein Hindernis trifft“, sagt Rotter.

Das Röhren-Labyrinth

Das Experiment wurde mit einer luftgefüllten Röhre durchgeführt, in der unregelmäßige Hindernisse eingebaut wurden. Schickt man eine Schallwelle durch dieses Rohr, kommt am Ende praktisch kein Schall an. Wenn man allerdings die in die Röhre eingebrachten Lautsprecher nach den mathematischen Regeln steuert, die das Team der TU Wien entwickelt hat, dann verlässt die Schallwelle das Rohr so, als wäre sie unterwegs auf kein einziges Hindernis gestoßen.

Das Experiment in Lausanne zeigt, dass die Wellen-Manipulations-Technologien der TU Wien tatsächlich praxistauglich sind. Das Ziel ist nun, die Möglichkeiten dieser Technologie weiter auszubauen. „Wenn dasselbe im dreidimensionalen Raum mit Lichtwellen gelingt, könnte man im Prinzip Objekte unsichtbar machen“, sagt Stefan Rotter. Während für eine mögliche „Tarnkappe“ freilich noch einige weitere Entwicklungsschritte nötig sind, könnte die neue Technik heute schon für verschiedene Anwendungen in der Nachrichtenübertragung höchst interessant sein.

Originalpublikation: E. Rivet et al., Constant-pressure sound waves in non-Hermitian disordered media, Nature Physics, 2018. DOI: 10.1038/s41567-018-0188-7.
Nature-Paper über die theoretischen Grundlagen (2017): https://www.nature.com/articles/lsa201735

Kontakt:
Prof. Stefan Rotter
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13618
stefan.rotter@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien

Weitere Berichte zu: EPFL Glas Lichtstrahl Nature Physics Rohr Röhre Schallwelle Schallwellen Tarnkappe Welle sound waves

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

nachricht Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert
19.11.2018 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Gen-Radiergummi: Neuer Behandlungsansatz bei chronischen Erkrankungen

19.11.2018 | Biowissenschaften Chemie

Mit maschinellen Lernverfahren Anomalien frühzeitig erkennen und Schäden vermeiden

19.11.2018 | Informationstechnologie

Neuer Stall ermöglicht innovative Forschung für tiergerechte Haltungssysteme

19.11.2018 | Agrar- Forstwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics