Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie lange braucht ein Elektron, um zu tunneln?

24.08.2015

Die Kombination aus ab-initio numerischen Experimenten und Theorie zeigt, dass das optische Tunneln eines Elektrons aus einem Atom instantan stattfinden kann.

Wie viel Zeit benötigt ein Atom um ein Photon zu absorbieren und ein Elektron freizugeben? Und was wenn nicht ein, sondern viele Photonen benötigt werden für die Ionisation? Wieviel Zeit würde die Absorption von vielen Photonen beanspruchen?


Mittels der ARM-Theorie aus den mit TDSE Rechnungen numerisch erhaltenen Offset-Winkeln (rechte Achse) rekonstruierte Ionisationszeiten (linke Achse). Rote Kreise kennzeichnen die numerisch berechneten Offset-Winkel geteilt durch die Laserfrequenz, θ/ω. Blaue Rauten zeigen die Offset-Winkel mit der durch Subtraktion des Effekts der Pulseinhüllenden erhaltene Korrektur, ti0=θ/ω-|Δtienv(θ,ppeak)| . Grüne, umgekehrte Dreiecke zeigen die Coulomb-Korrektur zur Ionisationszeit, ausgewertet am Maximum der Photoelektronenverteilung, |ΔtiC(θ,ppeak|. Orangefarbene Dreiecke zeigen die von uns durch Anwendung der in Gleichung(4) in der Veröffentlichung definierten Rekonstruktionsprozedur erhaltenen Ionisationszeiten. In Bezug auf die Abbildung sind sie das Ergebnis der Subtraktion der grünen Kurve von der blauen Kurve. Abb.: MBI

Diese Fragen liegen im Kern der Attosekundenspektroskopie, welche zum Ziel hat Elektronenbewegung auf ihrer natürlichen Zeitskala aufzulösen.

Ionisation in starken Infrarotfeldern wird häufig als das Tunneln von Elektronen durch eine Potentialbarriere betrachtet. Dabei wird die Barriere durch die Kombination des atomaren Potentials, welches das Elektron bindet, und des elektrischen Feldes des Laserpulses, welches das Elektron fortzieht, gebildet. Daher sieht sich die Attosekundenspektroskopie unerwartet mit einer nahezu uralten und kontroversen Frage konfrontiert: Wie lange braucht ein Elektron, um durch eine Barriere zu tunneln?

In der Veröffentlichung von Torlina et al. wird dieser Frage anhand des sogenannten Attouhr-Aufbaus nachgegangen. Die Attouhr nutzt das rotierende elektrische Feld eines zirkular polarisierten Laserpulses als einen Zeiger der Uhr. Eine volle Umdrehung dieses Zeigers dauert eine Laserperiode, ungefähr 2,6 fs für Experimente mit 800 nm Pulsen eines Titan:Saphir-Lasers.

Mit dem rotierenden elektrischen Feld rotiert ebenfalls die Tunnelbarriere. Daher tunneln Elektronen, die zu unterschiedlichen Zeiten tunneln, in verschiedene Richtungen. Es ist diese Verknüpfung zwischen Zeit und Richtung der Elektronenbewegung, die es der Attouhr ermöglicht Zeiten zu messen.

In jeder Uhr muss der Zeitpunkt Null festgelegt werden. Bei der Attouhr geschieht dies durch die Anwendung eines sehr kurzen Laserpulses, der nur ein bis zwei Zyklen andauert. Der Tunnelvorgang findet in einem kleinen Zeitfenster statt, wenn das rotierende elektrische Feld sein Maximum durchläuft.

Weiterhin, wie jede andere Uhr, muss auch die Attouhr kalibriert werden. Man muss wissen wie die Zeit der Elektronenemission - des Austritts des Elektrons aus der Tunnelbarriere - auf den Winkel, unter dem das Elektron detektiert wird, abgebildet ist. Diese Kalibrierung der Attouhr wurde nun durch Torlina et al. erreicht, ohne Ad-hoc-Annahmen zur Natur des Ionisationsprozesses oder zum zugrundeliegenden physikalischen Bild zu treffen.

Mit der Kombination aus analytischer Theorie und akkuraten numerischen Experimenten, und nachdem die Attouhr kalibriert wurde, konnten die Autoren schließlich einen genauen Blick auf die Verzögerungen beim Elektronentunneln werfen. Sie gelangen zu der überraschenden Antwort: Diese Zeitverzögerung kann gleich Null sein. Zumindest im Bereich der nichtrelativistischen Quantenmechanik verbringt das aus dem Grundzustand des Wasserstoffatoms tunnelnde Elektron keine Zeit in der Tunnelbarriere.

Die Situation kann sich jedoch ändern, falls das Elektron auf seinem Weg auf andere Elektronen trifft, was in anderen Atomen oder in Molekülen wichtig werden kann. Die Wechselwirkung zwischen den Elektronen kann zu Verzögerungen führen.

Somit stellt die Attouhr ein einzigartiges Fenster dar, nicht nur zur Tunneldynamik, aber auch zum Wechselspiel der verschiedenen Elektronen, die am Ionisationsprozess teilnehmen, und wie die zurückbleibenden Elektronen sich dem Verlust ihrer Kameraden neu anpassen

Originalpublikation: Nature Physics
Lisa Torlina, Felipe Morales, Jivesh Kaushal, Igor Ivanov, Anatoli Kheifets, Alejandro Zielinski, Armin Scrinzi, Harm Geert Muller, Suren Sukiasyan, Misha Ivanov, Olga Smirnova, Nature Physics 11, 503-508 (2015) (DOI:10.1038/NPHYS3340)https://www.nature.com/nphys/journal/v11/n6/full/nphys3340.html

Kontakt
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin
Dr. Olga Smirnova
smirnova@mbi-berlin.de
+49 (0) 30 6392 1340
Prof. Dr. Mikhail Ivanov
mivanov@mbi-berlin.de
+49 (0) 30 6392 1210

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

nachricht Stabile Blasen und ein Wasserläufer bewahren Stahl vor Erosion
30.03.2020 | Otto-von-Guericke-Universität Magdeburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungsnachrichten

Wo bleibt das Plastik im Ozean?

30.03.2020 | Ökologie Umwelt- Naturschutz

Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

30.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics