Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie eine Spektrallinie entsteht

11.11.2016

Ultrakurze intensive Laserpulse schalten fundamentales Quantenphänomen

Zum ersten Mal konnten Physiker in Echtzeit beobachten, wie eine atomare Spektrallinie in der unglaublich kurzen Zeitspanne von einigen Femtosekunden entsteht, und damit eine theoretische Vorhersage bestätigen.


Absorption in Helium in Abhängigkeit von der Photonenenergie des anregenden extrem-ultravioletten Lichtblitzes und dem Zeitversatz zum ionisierenden nah-infraroten Laserpuls, der als Schalter wirkt.

Grafik: MPIK

Dazu verwendeten sie einen sehr schnellen zeitlichen Schalter: Ein intensiver Laserblitz unterbricht den natürlichen Zerfall kurz nach Anregung durch einen vorangehenden Laserblitz. Wie sich die asymmetrische Fano-Linienform von zwei quantenmechanisch interferierenden Elektronen im Heliumatom zeitlich aufbaut, verfolgten die Wissenschaftler, indem sie den Zeitversatz zwischen den beiden Laserpulsen variierten.

Im klassischen Bild können die Elektronen in einem Atom nur auf bestimmten Bahnen ihren Kern umkreisen – oder quantenmechanisch gesprochen bestimmte Orbitale bzw. Energieniveaus besetzen. Licht kann ein Elektron auf eine höhere Bahn heben (anregen), wenn seine Energie (Farbe) der Energiedifferenz der Orbitale entspricht.

Das Atom absorbiert also nur bestimmte Lichtfarben, sein Absorptions-Spektrum genannt. In den meisten Fällen haben die einzelnen Spektrallinien eine symmetrische Form; unter besonderen Bedingungen treten aber auch asymmetrische Linienformen auf, die als Fano-Profile bezeichnet werden.

Ein Beispiel dafür ist der Zerfall doppelt angeregten Heliums: Eines der beiden angeregten Elektronen fällt in den Grundzustand zurück, nachdem es mit dem anderen Elektron kollidiert ist, das dadurch aus dem Atom herausfliegt. Da das freie Elektron nicht mehr auf diskrete Energieniveaus beschränkt ist, sprechen die Physiker von der Kopplung eines diskreten Zustands an ein Kontinuum.

Dieses Phänomen tritt bei vielen verschiedenen Vorgängen in der Natur auf, insbesondere an der Grenze zwischen Quanten- (diskrete Energien) und klassischer (kontinuierliche Energien) Mechanik. Theoretische Rechnungen sagen vorher, dass sich das zugehörige Fano-Profil nicht sofort, sondern nach und nach, wenn auch extrem schnell, aufbaut: Das Entfalten der Linienform dauert in Helium einige Femtosekunden – einige Millionstel einer Milliardstel Sekunde.

Kürzlich gelang es Experimentalphysikern vom MPI für Kernphysik (MPIK) in Zusammenarbeit mit theoretischen Physikern der Technischen Universität Wien und der Kansas State University in den USA, eine Art Zeitlupen-Film vom Entstehen einer solchen Fano-Linie aufzunehmen. Die extrem kurzen Zeiten erreichten sie mit zwei ultrakurzen laserkontrollierten Lichtblitzen. Der erste im extremen Ultraviolett regt beide Elektronen des Heliumatoms an.

Einige Femtosekunden später löst der zweite, intensive Laserblitz im nahen Infrarot die Ionisation vorzeitig aus, d.h. er beschleunigt den natürlichen Zerfallsprozess stark. Alexander Blättermann, Postdoktorand in der Gruppe von Thomas Pfeifer am MPIK, veranschaulicht den Vorgang: „Man kann sich das angeregte Heliumatom als einen mit der Lichtfrequenz schwingenden Dipol (ein elektrisch geladenes Pendel) vorstellen, der die optische Absorptionslinie erzeugt.

Der nachfolgende starke Infrarotpuls wirkt als ultraschneller Lichtschalter und stoppt die Schwingung, bevor sich die Linie vollständig aufgebaut hat.“ Durch Variation des Zeitversatzes zwischen den beiden Laserpulsen – dies erfolgte mit einer Genauigkeit von unter einer Femtosekunde – verfolgten die Wissenschaftler das Entstehen der Linienform in Echtzeit.

„Die experimentellen Ergebnisse zeigen schön, wie sich das Fano-Profil mit zunehmendem Zeitversatz nach und nach aufbaut“, sagt Andreas Kaldun, der kürzlich vom MPIK zum SLAC in Stanford gewechselt ist. Bei sehr kurzen Zeitversätzen ist die Spektrallinie komplett zu einer breiten und flachen Bande verschmiert. Mit zunehmendem Zeitversatz bekommt der Dipol immer mehr Zeit zum Schwingen, wodurch die Linie schrittweise schmaler und steiler wird und sich schließlich dem ursprünglichen Fano-Profil annähert – in sehr guter Übereinstimmung mit der theoretischen Vorhersage.

„Unsere Ergebnisse bestätigen somit nicht nur die Vorhersage, sondern demonstrieren zugleich die Leistungsfähigkeit des verwendeten ultra-schnellen Lichtschalter-Prinzips für die Erforschung der Entstehung und des zeitlichen Ablaufs verschiedener fundamentaler Quantenprozesse, die bisher nur anhand ihrer statischen Absorptionsspektren untersucht werden konnten“, resümiert Thomas Pfeifer.

Das Studium solch fundamentaler atomarer Vorgänge mit verschiedenen experimentellen Methoden hat schon immer die Grundlagen der Physik vorangebracht (z.B. die Entdeckung der Quantenmechanik) und bleibt auch in der weltweiten Forschungslandschaft bis heute aktuell: In derselben Ausgabe des Science-Magazins erscheint eine Arbeit von französischen und spanischen Forschern, welche die komplementäre Methode der zeitaufgelösten Photoelektronen-Spektroskopie eingesetzt haben, um einen Blick „von außen“ auf die Fano-Resonanz des Atoms zu werfen (DOI: 10.1126/science.aah5188). Dies geschieht durch die zeitaufgelöste Rekonstruktion einer aus dem Atom herauslaufenden quantenmechanischen Elektronenwelle.

Zusammen mit dem oben beschriebenen Blick „von innen“ (DOI: 10.1126/science.aah6972) durch die zeitlich geschaltete Dipolschwingung, leistet die Atomphysik mit komplementären Methoden auch hier wieder einen wichtigen Beitrag zum Verständnis der Grundbausteine der Natur. Auf lange Sicht kann dies dann zu technologischen Anwendungen führen, z.B. der laserkontrollierten Chemie oder winzigen ultraschnellen Computern, wie in der Vergangenheit die Grundlagen der Quantenmechanik zu Lasern und Röntgenquellen führten.

Originalveröffentlichung:
Observing the ultrafast build-up of a Fano resonance in the time domain, A. Kaldun, A. Blättermann, V. Stooß, S. Donsa, H. Wei, R. Pazourek, S. Nagele, C. Ott, C. D. Lin, J. Burgdörfer, T. Pfeifer, Science, 11.11.2016, DOI: 10.1126/science.aah6972

Kontakt:
Prof. Dr. Thomas Pfeifer, MPI für Kernphysik
Tel.: +496221 516380
E-Mail: thomas.pfeifer@mpi-hd.mpg.de

Prof. Dr. Joachim Burgdörfer, Technische Universität Wien
Tel.: + 43 1 58801 136 10
E-Mail: joachim.burgdoerfer@tuwien.ac.at

Prof. Dr. Chii-Dong Lin, Kansas State University
Tel.: +1-785-532-1617
E-Mail: cdlin@phys.ksu.edu

Weitere Informationen:

http://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home/ Abteilung Pfeifer am MPIK
http://www.mpi-hd.mpg.de/mpi/de/aktuelles/meldung/detail/die-choreografie-eines-...

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Berichte zu: Atom Elektronen Femtosekunde Heliumatom Kernphysik Laserblitz MPI MPIK Quantenmechanik Spektrallinie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuer Quantenzustand nachgewiesen
31.03.2020 | Technische Universität Braunschweig

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blockierung des Eisentransports könnte Tuberkulose stoppen

Tuberkulose-Bakterien brauchen Eisen zum Überleben. Wird der Eisentransport in den Bakterien gestoppt, so kann sich der Tuberkulose-Erreger nicht weiter vermehren. Nun haben Forscher der Universität Zürich die Struktur des Transportproteins ermittelt, das für die Eisenzufuhr zuständig ist. Dies eröffnet Möglichkeiten zur Entwicklung neuer Medikamente.

Einer der verheerendsten Erreger, der sich im Inneren menschlicher Zellen vermehren kann, ist Mycobacterium tuberculosis – der Bazillus, der Tuberkulose...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studie mit bispezifischem Antikörper liefert beeindruckende Behandlungserfolge bei Multiplem Myelom

01.04.2020 | Medizin Gesundheit

Unternehmenswissen - Wie gelingt der Umstieg von Präsenz auf Online?

01.04.2020 | Seminare Workshops

SmartKai – „Einparkhilfe“ zur Vermeidung von Schäden an Schiffen und Hafeninfrastruktur

01.04.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics