Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die Natur ihre Formeln verrät

03.02.2020

Eine Quanten-Beschreibung für ein Vielteilchensystem zu entwickeln ist kompliziert. TU Wien und Universität Heidelberg fanden einen Weg, Quantentheorien direkt aus dem Experiment abzulesen.

Viele der ganz großen Fragen der Physik lassen sich mit Hilfe von Quantenfeldtheorien beantworten: Sie benötigt man, um Wechselwirkungen zwischen Teilchen zu beschreiben, sie sind in der Festkörperphysik genauso unverzichtbar wie in der Kosmologie.


Die Quantentheorie von Vielteilchen-Systemen lässt sich nicht exakt lösen - Näherungen sind daher gefragt.

TU Wien


Der Atomchip an der TU Wien

TU Wien

Meistens ist es allerdings extrem kompliziert, ein quantenfeldtheoretisches Modell für eine bestimmte Fragestellung zu entwickeln – besonders dann, wenn es sich um ein System handelt, das aus vielen wechselwirkenden Teilchen besteht.

Nun hat ein Team der TU Wien und der Universität Heidelberg Methoden entwickelt, mit denen man diese Modelle direkt von der Natur ablesen kann.

Dadurch wird es möglich, nicht nur zu messen und dann die Resultate mit theoretischen Vorhersagen zu vergleichen, sondern man misst in gewissem Sinn die Theorie selbst. Das soll nun neues Licht in das komplizierte Gebiet der Vielteilchen-Quantenphysik bringen.

Zukunftstechnologie Quanten-Simulatoren

In den letzten Jahren hat eine neue Methode, quantenphysikalische Systeme zu untersuchen, an Bedeutung gewonnen – die sogenannten Quanten-Simulatoren.

„Von manchen Quantensystemen haben wir einfach keine befriedigende Beschreibung, etwa von Hochtemperatur-Supraleitern. Andere Systeme können wir grundsätzlich nicht direkt beobachten, etwa das frühe Universum, kurz nach dem Urknall. Angenommen, wir möchten trotzdem etwas über solche Quantensysteme lernen - dann wählen wir einfach ein anderes System, das man im Labor gut kontrollieren kann, und passen es gezielt so an, dass es sich ähnlich verhält wie das System, das uns eigentlich interessiert. So können wir zum Beispiel Experimente an ultrakalten Atomen verwenden, um etwas über Systeme zu lernen, die wir sonst gar nicht untersuchen könnten“, erklärt Jörg Schmiedmayer vom Vienna Center of Quantum Science and Technology (VCQ) am Atominstitut der TU Wien.

Möglich ist das, weil es ganz fundamentale Gemeinsamkeiten zwischen unterschiedlichen quantenphysikalischen Beschreibungen unterschiedlicher Systeme gibt.

Doch egal, welches Quanten-System man untersucht, auf ein wesentliches Problem stößt man immer: „Wenn zu viele Teilchen im Spiel sind, dann werden die Formeln der Quantentheorie rasch so kompliziert, dass man sie auch mit den besten Supercomputern der Welt niemals lösen kann“, erklärt Sebastian Erne. „Das ist schade, denn gerade Systeme, die aus vielen Teilchen bestehen, sind besonders interessant. Im Alltag spielen immer viele Teilchen gleichzeitig eine Rolle.“

Weg mit den Details!

Es ist daher bei Vielteilchen-Systemen nicht möglich, eine exakte Quantentheorie zu lösen, bei der jedes einzelne Teilchen präzise berücksichtigt wird. Man muss eine vereinfachte Quanten-Beschreibung finden, die alle wesentlichen Eigenschaften enthält, aber keine Details über die einzelnen Teilchen mehr benötigt. „Das ist so ähnlich, wie wenn wir ein Gas beschreiben“, erklärt Jörg Schmiedmayer. „Dann interessiert uns auch nicht jedes einzelne Atom, wichtig sind Größen wie Druck und Temperatur.“

Doch wie kommt man zu solchen Theorien für Vielteilchensysteme? Sie rein rechnerisch aus den Gesetzen abzuleiten, die für einzelne Teilchen gelten, ist extrem kompliziert. Doch wie sich nun herausstellt, ist das gar nicht unbedingt nötig. „Wir haben eine Methode gefunden, die quantenfeldtheoretische Beschreibung direkt aus dem Experiment abzulesen“, sagt Schmiedmayer. Die Natur liefert in gewissem Sinn ganz von selbst die Formeln, mit denen man sie beschreiben muss.

Man weiß, dass jede Quantentheorie bestimmten formalen Regeln gehorchen muss – man spricht etwa von Korrelationen, Propagatoren, Vertices, Feynman-Diagrammen, von den Grundbausteinen, die es in jedem quantenphysikalischen Modell gibt. Das Forschungsteam von TU Wien und Universität Heidelberg hat einen Weg gefunden, diese einzelnen Grundbausteine experimentell zugänglich zu machen. So ergibt sich eine empirisch gefundene Quantentheorie für ein Vielteilchensystem, ganz ohne mit Papier und Bleistift arbeiten zu müssen.

„Dass das theoretisch möglich ist, haben wir schon seit einigen Jahren vermutet, aber nicht jeder hat uns geglaubt, dass es tatsächlich funktioniert“, sagt Jörg Schmiedmayer. „Nun haben wir gezeigt, dass es tatsächlich klappt – anhand eines speziellen Falls, bei dem die Theorie auch rechnerisch gefunden werden kann. Unsere Messergebnisse liefern genau dieselben Theorie-Bausteine.“

Ultrakalte Atomwolken

Gearbeitet wurde dabei mit Wolken aus tausenden ultrakalten Atomen, die in einer magnetischen Falle auf einem AtomChip festgehalten werden. „Aus den Quanten-Wellenmustern dieser Atomwolken kann man jene Korrelationsfunktionen ermitteln, aus denen dann die Grundbausteine der dazu passenden Theorie abgeleitet werden“, erklärt Schmiedmayer.

Die Ergebnisse wurden nun im Fachjournal „Physical Review X“ publiziert. Das Team hofft, damit die Untersuchung von Quanten-Vielteilchensystemen maßgeblich zu vereinfachen – vielleicht lässt sich ja auf diese Weise ein bisschen Licht auf einige der großen Fragen der Physik werfen.

Das Projekt wurde vom FWF gefördert, im Rahmen der österreichischen Beteiligung am Spezialforschungsbereich ISOQUANT der DFG.

Wissenschaftliche Ansprechpartner:

Prof. Jörg Schmiedmayer
Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141888
hannes-joerg.schmiedmayer@tuwien.ac.at
schmiedmayer@AtomChip.org

Originalpublikation:

T. Zache et al., Extracting the Field Theory Description of a Quantum Many-Body System from Experimental Data, Phys. Rev. X 10, 011020 (2020). https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.011020

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar
13.07.2020 | Max-Planck-Institut für Astronomie

nachricht Kosmische Katastrophe bestätigt Einsteins Relativitätstheorie
10.07.2020 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Konzept für neue Technik zur Untersuchung superschwerer Elemente vorgestellt

13.07.2020 | Biowissenschaften Chemie

Alternativmethoden für Tierversuche: VISION – Ein mikrofluidisches Chipsystem als Alternative zu Tierversuchen

13.07.2020 | Biowissenschaften Chemie

Neue Molekülbibliothek hilft bei der systematischen Suche nach Wirkstoffen

13.07.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics