Wie aus Staub Planeten entstehen

Der Fallturm im Labor des IGEP Ingo von Borstel, Hiroaki Katsuragi, Jürgen Blum/TU Braunschweig

Nach Modellen von Astrophysikern entstehen aus Staubkörnchen im Weltraum immer größere Klumpen, bis ein neuer Himmelskörper entsteht. Durch seine wachsende Schwerkraft zieht er weiteren Staub an und wächst.

Stößt der Himmelskörper mit anderen Fragmenten oder Planetenvorstufen zusammen, entstehen Trümmerstücke und schließlich wieder Staub.

Um mehr zu erfahren, wie sich Staubklumpen und Partikel bei Kollisionen verhalten und entsprechend zur Planetenbildung beitragen, haben Professor Hiroaki Katsuragi von der Nagoya University, Japan, und Professor Jürgen Blum vom Institut für Geophysik und Extraterrestrische Physik (IGEP) an der TU Braunschweig Experimente durchgeführt – im Labor auf der Erde.

Professor Blum konstruierte dazu einen 1,5 Meter hohen Fallturm, der unter Mikrogravitations- und Vakuumbedingungen wie im Weltraum betrieben wird. Dann schossen die Wissenschaftler vom oberen Rand des Turmes ein milimetergroßes Projektil auf einen frei fallenden Klumpen Staubpartikel, ein sogenanntes Cluster.

Dabei filmte eine Hochgeschwindigkeitskamera mit 3000 Bildern pro Sekunde, wie das Projektil auf den Klumpen prallte und den Cluster auseinander brach. Sie wiederholten das Experiment mit Projektilen aus Plastik, Blei und Glas verschiedener Größen, die entweder auf porösen Staub oder dichte, starre Glasperlen trafen.

Das Duo aus Granular- und Planetenphysiker analysierte die stoßinduzierte Ausdehnung der Partikel. Die Expansionsdynamik von porösen Clustern (lose Partikel) stimmte mit der von starren Clustern überein. Die hierarchische Struktur des dichten, starren Materials hatte demnach keinen Einfluss auf die Dynamik des Aufpralls.

Durch die Kollision wurden etwa zwei bis sieben Prozent der kinetischen Energie des Projektils auf das Cluster übertragen. Das Projektil behielt etwa 15 Prozent seiner Vorkollisionsenergie, wobei der Rest der Energie durch Verformung oder Wärme abgeführt wurde.

Die Experimente von Blum und Katsuragi deuten darauf hin, dass sich universelle Regeln für alle Kollisionen ableiten lassen – unabhängig von Größe und Material des Projektils und von der Partikelart.

„Durch diese universellen Regeln lassen sich unsere Ergebnisse auch auf die uns unbekannten Körper in fremden Planetensystemen anwenden. Wir können damit viel besser als zuvor vorhersagen, was bei Kollisionen dort geschieht“, sagt Professor Blum.

Prof. Dr. Jürgen Blum
Institut für Geophysik und Extraterrestrische Physik (IGEP)
Technische Universität Braunschweig
Mendelssohnstr. 3
38106 Braunschweig
Tel.: 0531 391-5217
E-Mail: j.blum@tu-bs.de
Web: http://www.igep.tu-bs.de

Hiroaki Katsuragi and Jürgen Blum, Impact-Induced Energy Transfer and Dissipation in Granular Clusters under Microgravity Conditions, Physical Review Letters, DOI:10.1103/PhysRevLett.121.208001 https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.208001

https://magazin.tu-braunschweig.de/pi-post/wie-aus-staub-planeten-entstehen/

Media Contact

Janos Krüger idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer