Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wettrennen in Sonnennähe: Ionen sind schneller als Atome

22.03.2019

Astrophysiker beobachten physikalische Bedingungen in Gasströmen

In Sonnenprotuberanzen, also in Wolken über dem Sonnenrand, bewegen sich Ionen schneller als neutrale Atome. Das haben Wissenschaftler der Universität Göttingen, des Pariser Institut d’Astrophysique sowie des Istituto Ricerche Solari Locarno beobachtet. Die Ergebnisse der Studie sind in der Fachzeitschrift Astrophysical Journal erschienen.


Diese Sonnenprotuberanz ragt bis zu 50.000 Kilometer über den Sonnenrand; aufgenommen am Teneriffa-Observatorium.

Foto: Dr. Eberhard Wiehr


Dr. Eberhard Wiehr

Foto: Heidrun Lorenz

In der Astrophysik spielt der „vierte Zustand“ von Materie eine entscheidende Rolle. Neben fest, flüssig und gasförmig bezeichnet „Plasma“ eine Ansammlung von Atomen, die durch Stöße oder hochenergetische Strahlung Hüllen-Elektronen verloren haben und dadurch zu Ionen werden. Diese unterliegen magnetischen Kräften, welche elektrisch neutrale Atome nicht beeinflussen.

Gibt es im Plasma nicht genügend Stöße, so können beide Teilchensorten unabhängig voneinander strömen. Den Forschern ist es nun gelungen, die physikalischen Bedingungen in solchen „teil-ionisiertem Plasma ohne Stoß-Gleichgewicht“ in Gasströmen der Sonne zu beobachten. Das Ergebnis: In einer Wolke über dem Sonnenrand, auch Protuberanz genannt, bewegten sich Ionen des Elements Strontium um 22 Prozent schneller als Natrium-Atome.

16 Stunden später waren die Ionen nur noch um elf Prozent schneller. „Offenbar wurden nun die neutralen Natrium-Atome stärker von den Strontium-Ionen mitgerissen“, sagt Dr. Eberhard Wiehr von der Universität Göttingen, Erstautor der Studie. Ursache hierfür könnte eine angestiegene Teilchendichte sein, welche die Stoßwahrscheinlichkeit erhöht.

„Zudem könnte sich auch das Strömungsverhalten der Protuberanz in den 16 Stunden verändert haben“, so Wiehr. Die schnelleren Ionen sind nämlich an die Schwingung des magnetischen Gerüsts gekoppelt – dies hält die Protuberanz gegen die Sonnen-Anziehung in der Schwebe.

Bewegungen in tieferen Sonnenschichten sorgen dafür, dass die magnetischen Kraftlinien schwanken. Die Ionen folgen einer Umkehr der Schwingungs-Richtung sofort, während die neutralen Atome sich immer wieder an den Ionen neu orientieren müssen. Die Forscher planen nun die systematische Suche nach Protuberanzen mit passenden Schwingungen, die über längere Zeit vermessen werden können.

Wissenschaftliche Ansprechpartner:

Dr. Eberhard Wiehr
Georg-August-Universität Göttingen
Institut für Astrophysik
Friedrich-Hund-Platz 1, 37077 Göttingen
E-Mail: ewiehr@gwdg.de

Originalpublikation:

Wiehr et al. Evidence for the two fluid scenario in solar prominences. Astrophysical Journal (2019). https://doi.org/10.3847/1538-4357/ab04a4

Thomas Richter | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-goettingen.de/de/3240.html?id=5379

Weitere Berichte zu: Astrophysik Atome Ionen Plasma Protuberanz Strontium Strömungsverhalten

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics