Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wesentliche Quantencomputer-Komponente um zwei Größenordnungen verkleinert

14.11.2017

Forscher am IST Austria haben kompakte nichtmagnetische Photonenrouter entwickelt. Die mikrometergroßen Bauelemente leiten Mikrowellenphotonen unidirektional und können Qubits vor schädlichem Rauschen schützen.

Quantenbits, auch Qubits genannt, sind die Schlüsselbausteine zukünftiger Quantencomputer. Um eine Berechnung durchzuführen, müssen Signale zu und von den Qubits weg geleitet werden. Gleichzeitig sind Qubits aber extrem empfindlich gegenüber Störungen aus ihrer Umgebung und müssen von unerwünschten Signalen, insbesondere von Magnetfeldern, abgeschirmt werden.


Der neue nichtreziproke Bauteil wirkt wie eine Kreisverkehr für Photonen. Hier zeigen Pfeile die Ausbreitungsrichtung verschiedener Photonen.

IST Austria/Birgit Rieger

Es ist daher ein Problem, dass diejenigen Bauteile, die Qubits vor unerwünschten Signalen schützen sollten, sogenannte nichtreziproke Bauelemente wie Isolatoren oder Zirkulatoren, selbst Magnetfelder erzeugten. Darüber hinaus sind kommerzielle Zirkulatoren mehrere Zentimeter groß, was problematisch ist, da ein Quantenprozessor eine große Anzahl solcher Elemente benötigt.

Jetzt haben Wissenschaftler des Institute of Science and Technology Austria (IST Austria) in Klosterneuburg gleichzeitig mit konkurrierenden Gruppen in der Schweiz und den Vereinigten Staaten die Größe dieser Bauteile um etwa zwei Größenordnungen verringert.

Ihre Vorrichtung, deren Funktion sie mit der eines Kreisverkehrs für Photonen vergleichen, ist nur etwa ein Zehntel Millimeter groß und – was vielleicht noch wichtiger ist – sie ist nichtmagnetisch. Ihre Studie wurde in der Open-Access-Zeitschrift Nature Communications veröffentlicht.

Wenn Forscher ein Signal, zum Beispiel ein Mikrowellenphoton, von einem Qubit empfangen wollen, aber gleichzeitig verhindern wollen, dass Rauschen und andere Störsignale denselben Weg zurück zum Qubit nehmen, verwenden sie nichtreziproke Bauteile wie Isolatoren oder Zirkulatoren. Diese Geräte steuern den Signalverkehr, ähnlich wie der Straßenverkehr im Alltag geregelt wird.

Aber im Fall eines Quantencomputers sind es nicht Autos, die den Verkehr verursachen, sondern Photonen in Übertragungsleitungen. "Stellen Sie sich einen Kreisverkehr vor, in dem Sie nur gegen den Uhrzeigersinn fahren können", erklärt Erstautor Dr. Shabir Barzanjeh, Postdoc in der Gruppe von Professor Johannes Fink am IST Austria.

"An der ersten Ausfahrt, ganz unten, befindet sich unser Qubit. Sein schwaches Signal kann zur zweiten Ausfahrt ganz oben gelangen. Aber ein Signal, das von dieser zweiten Ausfahrt kommt, kann nicht denselben Weg zurück zum Qubit nehmen. Es wird gezwungen, entgegen dem Uhrzeigersinn zu fahren, und bevor es Ausgang 1 erreichen kann, trifft es auf Ausgang 3. Dort blockieren wir es und verhindern, dass es das Qubit beschädigt."

Die von der Gruppe entwickelten Zirkulatoren bestehen aus integrierten Aluminiumschaltkreisen auf Siliziumchips. Erstmals wurden dabei mikromechanischen Oszillatoren verwendet: zwei kleine Siliziumbalken, die auf dem Chip wie Gitarrensaiten schwingen und mit dem Schaltkreis interagieren. Diese Bauteile sind winzig: nur etwa einen Zehntel Millimeter im Durchmesser, was einen der Hauptvorteile des neuen Geräts gegenüber seinen traditionellen Vorgängern darstellt, die einige Zentimeter breit waren.

Die Prinzipien von Quantencomputern werden derzeit nur an einigen wenigen Qubits getestet, aber in Zukunft werden Tausende oder sogar Millionen von Qubits miteinander verbunden sein, und viele dieser Qubits benötigen ihren eigenen Zirkulator. "Stellen Sie sich vor, Sie bauen einen Prozessor mit Millionen solcher zentimetergroßen Komponenten. Er wäre enorm groß und unpraktisch", sagt Shabir Barzanjeh.

"Unsere nichtmagnetischen und sehr kompakten Mikrochipzirkulatoren zu verwenden macht das Leben viel einfacher." Bis es zu dieser konkreten Anwendung der neuen Bauteile kommt, sind aber noch einige Hürden zu nehmen. So ist die verfügbare Signalbandbreite derzeit noch recht klein und die relativ hohen erforderlichen Eingangsleistungen könnten den Qubits schaden. Die Forscher sind aber zuversichtlich, dass sich diese Probleme als durchaus lösbar erweisen werden.

Professor Johannes Fink ist seit Anfang 2016 am IST Austria tätig. Er und seine Gruppe untersuchen Quantenphysik in elektrischen, mechanischen und optischen Mikrochip-basierten Bauteilen mit dem Hauptziel, die Quantentechnologie voranzutreiben und zu integrieren. Anfang dieses Jahres erhielt er einen renommierten ERC Starting Grant für sein Projekt zur Entwicklung eines Glasfaser-Transceivers für supraleitende Qubits, sowie einen Grant der Schweizer NOMIS-Stiftung.

Dr. Shabir Barzanjeh wurde mit einem Marie-Skłodowsa-Curie-Stipendium ausgezeichnet, um am IST Austria zu arbeiten. Seine Hauptinteressen liegen in der Schaltkreisquantenelektrodynamik und der Optomechanik. Vom 12. bis zum 14. Februar 2018 veranstalten Johannes Fink und Shabir Barzanjeh die internationale Konferenz „Frontiers of Circuit QED and Optomechanics“ (FCQO 2018) in Klosterneuburg, um weltweit führenden Forscher auf dem Gebiet zusammen zu bringen. Eine Anmeldung ist bereits möglich: https://ist.ac.at/fcqo18

IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. http://www.ist.ac.at

Originalartikel:
„Mechanical on-chip microwave circulator”, Barzanjeh et al. 2017
https://www.nature.com/articles/s41467-017-01304-x

Weitere Informationen:

https://www.nature.com/articles/s41467-017-01304-x Originalartikel: Barzanjeh et al. 2017
https://ist.ac.at/fcqo18 Konferenz „Frontiers of Circuit QED and Optomechanics“ (FCQO 2018)
https://quantumids.com/ Webseite der Forschungsgruppe um Professor Johannes Fink

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Grundlagenforschung Optomechanics Photonen QED Qubit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics