Wenn sich Atome zu nahe kommen

Atomar aufgelöstes Bild des Übergangs einer Atomlage des Edelgases Xenon (links) benachbart von einer Atomlage Argon (rechts). Foto: Ferdinand Huber – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden, ist ein Algorithmus zur Umrechnung nötig.

Dazu wurden bisher zwei verschiedene Algorithmen eingesetzt, das 2001 von Giessibl vorgeschlagene Matrixverfahren und die 2004 von John Sader und Suzie Jarvis eingeführte Sader-Jarvis Methode.

Ferdinand Huber, Doktorand am Lehrstuhl Giessibl an der Fakultät für Physik der Universität Regensburg, hat nun die Kräfte zwischen Atomen nicht nur in einem Abstand gemessen, wo sich die Atome noch anziehen sondern auch bei kleinsten Abständen, wo erhebliche Abstoßungskräfte wirken.

Dabei machte er eine überraschende Entdeckung: die beiden Verfahren (Matrix- und Sader-Jarvismethode) ergaben gravierende Unterschiede in den ermittelten Kräften.

In der im Dezemberheft der Zeitschrift Nature Nanotechnology erschienenen Publikation „Interatomic force laws that evade dynamic measurement“ von John E. Sader, Barry D. Hughes, Ferdinand Huber und Franz J. Giessibl, Nature Nanotechnology 13, 1088 (2018), https://www.nature.com/articles/s41565-018-0277-x, beschreiben die Autoren den Grund für diese Diskrepanz und weisen zugleich einen Ausweg aus dieser Misere.

Die Rückrechnung der Kräfte aus der Frequenzverschiebung ist ein aus der Mathematik wohl bekanntes inverses Problem. Inverse Probleme können aber, abhängig von den Randbedingungen, „schlecht gestellt“ und damit unlösbar sein. In der obigen Publikation wurde aufgezeigt, dass das Problem der Inversion in einem bestimmten Bereich der Schwingungsamplitude schlecht gestellt ist.

Die Lösung besteht nun darin, die Schwingungsamplitude entweder kleiner als einen bestimmten Wert (z. B. einem halben Atomdurchmesser) oder größer als einen bestimmten Wert (z. B. von zwei Atomdurchmessern, abhängig jeweils vom exakten Kraftverlauf) zu wählen. Die neuen Ergebnisse erlauben also, mit höchster Präzision die chemischen Bindungskräfte zu messen, die die Welt zusammen halten.

Prof. Dr. Franz Gießibl
Lehrstuhl für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941-943-2105
E-Mail: franz.giessibl@ur.de

John E. Sader, Barry D. Hughes, Ferdinand Huber und Franz J. Giessibl, Interatomic force laws that evade dynamic measurement, Nature Nanotechnology 13, 1088 (2018)
DOI: 10.1038/s41565-018-0277-x
https://www.nature.com/articles/s41565-018-0277-x

Media Contact

Christina Glaser idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

KI-basierte Software in der Mammographie

Eine neue Software unterstützt Medizinerinnen und Mediziner, Brustkrebs im frühen Stadium zu entdecken. // Die KI-basierte Mammographie steht allen Patientinnen zur Verfügung und erhöht ihre Überlebenschance. Am Universitätsklinikum Carl Gustav…

Mit integriertem Licht zu den Computern der Zukunft

Während Computerchips Jahr für Jahr kleiner und schneller werden, bleibt bisher eine Herausforderung ungelöst: Das Zusammenbringen von Elektronik und Photonik auf einem einzigen Chip. Zwar gibt es Bauteile wie MikroLEDs…

Antibiotika: Gleicher Angriffspunkt – unterschiedliche Wirkung

Neue antimikrobielle Strategien sind dringend erforderlich, um Krankheitserreger einzudämmen. Das gilt insbesondere für Gram-negative Bakterien, die durch eine dicke zweite Membran vor dem Angriff von Antibiotika geschützt sind. Mikrobiologinnen und…

Partner & Förderer