Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn es sich reibt, sind die Atome schuld

09.07.2015

Reibung und Verschleiß spielen praktisch in jedem Industriebereich eine wichtige Rolle. AC²T und TU Wien konnten nun wichtige Gesetze der Reibung auf atomarer Ebene erklären.

Wenn man einen Schlitten über den Asphalt zieht, dann macht er hässliche Geräusche und wird von der Reibkraft gebremst. Wenn sich dann noch dazu jemand auf den Schlitten setzt, wird die Reibung noch viel größer und man wird ihn kaum noch ziehen können.


Eine zufällig geformte raue Oberfläche, vor dem Schleifprozess

TU Wien


Nach dem Reibungsvorgang sieht die Oberfläche ganz anders aus.

TU Wien

Je größer die Last, umso größer die Reibkraft – das ist ein wohlbekanntes Gesetz der Reibungslehre. Warum es allerdings einen so einfachen, linearen Zusammenhang zwischen Last und Reibung gibt, war bisher nicht klar.

Ein Team des Exzellenzzentrums für Tribologie AC2T research GmbH (kurz AC²T) und der TU Wien konnte diese Frage nun auf mikroskopischer Ebene klären: Entscheidend ist die effektive Kontaktfläche zwischen den beiden aneinander reibenden Objekten.

Erstaunlich ist, dass sich damit sogar das Reibverhalten bei Materialverschleiß erklären lässt. Auch in diesem Fall ist die effektive Kontaktfläche auf atomarer Skala die entscheidende Größe. Die Arbeit wurde nun im Fachjournal „Physical Review Letters“ veröffentlicht.

Tribologie: Reibung gibt es überall

Tribologie ist die Wissenschaft, die sich mit Reibung, Schmierung und Verschleiß beschäftigt. In fast allen Bereichen der Industrie hat man mit tribologischen Phänomenen zu tun – von der Reibung eines Zylinderkolbens im Motor über Bremsen bis hin zu Schienen, Seilbahnen oder Papiermaschinen.

Am Exzellenzzentrum für Tribologie (bzw. innerhalb des Schirmprojektes COMET-K2-Zentrum XTribology, hervorgegangen aus der TU Wien, gefördert vom Bund im Wege der österreichischen Forschungsförderungsgesellschaft FFG sowie den Bundesländern Niederösterreich, Vorarlberg und Wien), werden Reibung und Verschleiß in enger Zusammenarbeit mit der Wirtschaft wissenschaftlich untersucht.

Reibung auf mikroskopischer Skala

Um die tieferen Grundlagen der Reibung zu verstehen, muss man die Reibungsoberflächen manchmal auf atomarer Ebene untersuchen. AC²T und die TU Wien entwickelten Computersimulationen, in denen Oberflächen auf der Größenskala von Nanometern modelliert wurden. In der Simulation kann man diese dann gegeneinander bewegen und somit die Reibung und den Materialabtrag nachstellen.

Die Reibung beruht darauf, dass die beiden aufeinander aufliegenden Oberflächen nicht ganz glatt sind. Einzelne Rauheitsspitzen kommen miteinander in Kontakt. „Wenn die Last gering ist, besteht nur physischer Kontakt zwischen den äußersten Unebenheiten der beiden Flächen“, erklärt Stefan Eder (AC²T), der Erstautor der Studie. „Wirkt von oben eine größere Last ein, werden die beiden Flächen enger aneinandergedrückt, und die effektive Kontaktfläche wird größer.“

Auf die Fläche kommt es an

Je größer die Kontaktfläche ist, auf der die Atome beider Objekte wechselwirken, umso größer ist auch die Reibkraft. Der einfache lineare Zusammenhang zwischen Last und Reibung kommt also daher, dass mehr Last zu einer immer größeren Zahl von Atomen führt, die miteinander eng wechselwirken können.

„Im Experiment ist es praktisch unmöglich, die Größe der effektiven Kontaktfläche zu messen“, sagt Stefan Eder. „In unserer Computersimulation können wir uns aber genau ansehen, wie die Nanostrukturen ineinandergreifen und welche Kontaktflächen sich ergeben. So können wir zeigen, dass es tatsächlich einen linearen Zusammenhang zwischen Kontaktfläche und Kraft gibt.“

Die Rechnungen erklären auch, warum die Reibung besonders groß ist, wenn eckige Partikel an einer Oberfläche reiben, und etwas geringer, wenn runde Partikel dominieren: Eckige Partikel führen zu einer größeren effektiven Kontaktfläche, runde Partikel berühren die raue Oberfläche fast nur an einem Punkt. Außerdem konnte gezeigt werden, dass der einfache Zusammenhang zwischen Kontaktfläche und Reibkraft auch dann noch gegeben ist, wenn es zu deutlichem Materialverschleiß an der Oberfläche kommt.

„Dass dieses recht einfache Bild tatsächlich auf mikroskopischer Skala seine Gültigkeit behält, ist überraschend“, meint Stefan Eder. „Mikroskopische Berechnungen dieser Vorgänge geben uns nun auch die Möglichkeit, kompliziertere Fälle zu verstehen, die sich nicht mit einem so einfachen Zusammenhang zwischen Last und Reibkraft erklären lassen.“

Ein Beispiel dafür ist etwa das Rasterkraftmikroskop: Eine feine Nadel auf einem winzigen Hebel wird über eine raue Oberfläche gezogen, nur einige wenige Atome in der äußersten Spitze der Nadel kommen in Kontakt mit der Oberfläche. „Reibung und Last sind nur direkt proportional, wenn man die Reibung als statistischen Effekt beschreiben kann, der durch eine große Zahl von Kontaktpunkten verursacht wird“, sagt Stefan Eder. „Beim Rasterkraftmikroskop hat man im Idealfall nur einen Kontaktpunkt, da muss man tatsächlich die Wechselwirkungen zwischen den äußersten Atomen untersuchen.“

Die Berechnungen wurden nun im Fachjournal „Physical Review Letters“ publiziert. Die theoretischen Arbeiten werden bei AC²T und an der TU Wien noch weitergeführt – die Erkenntnisse daraus sollen dann auch in die vielen industrienahen tribologischen Projekte einfließen, an denen im Exzellenzzentrum gearbeitet wird, beispielsweise zu den Themen Hochglanzpolieren oder Verschleißprozesse mit Nanopartikeln.

Weitere Informationen:

http://Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/tribologie
http://Originalpublikation: "Applicability of Macroscopic Wear and Friction Laws on the Atomic Length Scale": http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.025502

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics