Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord bei der Verschränkung von verdrehten Lichtquanten

02.11.2012
Einem Wiener Forscherteam um Anton Zeilinger ist ein neuer Weltrekord gelungen

Die Physiker konnten die Verschränkung der bisher größten Quantenzahlen erzeugen und vermessen. Die Forscher entwickelten hierfür eine neue Methode, um einzelne Lichtquanten miteinander zu verschränken, die sich stark entgegengesetzt drehen. Das Resultat stellt den ersten Schritt dar, auch größere, räumlich voneinander getrennte Objekte in zwei unterschiedliche Richtungen verschränkt miteinander drehen zu lassen. Die Forscher publizieren ihre Ergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift "Science".


Kameraaufnahme in Falschfarbendarstellung eines Lasers, der sich in einer quantenmechanischen Überlagerung aus 100 rechts- und 100 linkshändigen Drehimpulsquanten befindet.

Copyright: Robert Fickler, IQOQI, Universität Wien


Langzeitaufnahme eines Laserstrahls in mehreren so genannten Donut-Moden (Lichtmoden ohne Intensität im Zentrum).

Copyright: Robert Fickler, IQOQI, Universität Wien

Die Quantenphysik gilt weithin als eine Theorie für winzige Objekte, wie Atome oder Lichtquanten, bzw. für sehr kleine Einheiten, also niedrige Quantenzahlen. Eines ihrer spannendsten Phänomene ist die Verschränkung. Verschränkte Quanten verhalten sich, als ob sie sich gegenseitig beeinflussen könnten, obwohl sie räumlich voneinander getrennt sind. Schon seit den frühen Tagen der Quantenphysik stellt sich immer wieder die Frage: Ist Verschränkung auf kleine Objekte bzw. kleine Quantenzahlen beschränkt? In der Forschungsgruppe aus Wien wurde jetzt der erste Schritt unternommen, die Grenzen der quantenmechanischen Verschränkung anhand von sich drehenden Lichtteilchen zu testen.

Eine Eistänzerin könnte beispielsweise nach den Gesetzen der Quantenphysik eine Pirouette vollführen, bei der sie sich gleichzeitig nach links und rechts dreht. Zudem würde ihre Drehung mit dem Drehsinn einer zweiten, mit ihr verschränkten Tänzerin noch immer stark korreliert sein, auch wenn die beiden Tänzerinnen weit voneinander entfernt sind. Je schneller die Quanten-Eistänzerinnen sich drehen, desto größer ist die Quantenzahl ihres Drehimpulses. "In unserem Experiment haben wir die größten jemals gemessenen Quantenzahlen von Teilchen irgendwelcher Art verschränkt. Damit haben wir einen kleinen Weltrekord aufgestellt", so Zeilinger schmunzelnd.

Kann es Quanten-Eistänzerinnen wirklich geben?

Seit etwa 20 Jahren ist bekannt, dass es theoretisch keine Obergrenze für die Stärke dieses Drehimpulses für Lichtteilchen gibt. Bisherige Experimente waren jedoch aufgrund physikalischer Einschränkungen auf äußerst schwache Drehungen bzw. kleine Quantenzahlen limitiert. Bei dem in Wien durchgeführten Experiment kann hingegen theoretisch Verschränkung erzeugt werden, egal wie stark der Drehimpuls bzw. wie groß dessen Quantenzahl ist. "Einzig die limitierenden, technischen Mittel bremsen uns ein, um nicht schon bald Verschränkung von verdrehten Lichtquanten zu erzeugen, die wir vielleicht mit der bloßen Hand spüren könnten", erklärt Robert Fickler, Hauptautor der soeben in "Science" veröffentlichten Publikation. Die Forscher haben somit bewiesen, dass es prinzipiell möglich ist, miteinander verschränkte Eistänzerinnen gleichzeitig nach links und rechts drehen zu lassen. In der Praxis gibt es jedoch noch einige Herausforderungen zu bewältigen, bevor ein ähnliches Experiment mit makroskopischen Objekten durchgeführt werden kann.

Von den Grundlagen zur Anwendung

Neben der grundlegenden Frage nach den Grenzen makroskopischer Verschränkung beschäftigen sich die Physiker aber auch mit potenziellen Anwendungen ihrer Forschung. So können sie etwa die von ihnen erzeugten Lichtteilchen nutzen, um bereits mit sehr geringer Intensität genauere Winkelmessungen durchführen zu können. Dieses Prinzip ist besonders bei Untersuchungen von lichtsensitiven Materialien wie beispielsweise biologischen Substanzen vorteilhaft. "Aufgrund der Verschränkung können solche Messungen erstaunlicherweise aus beliebiger Entfernung und ohne jeglichen Kontakt zum Messobjekt oder sogar zu einem späteren Zeitpunkt durchgeführt werden", erläutert Fickler.

Die Forschung wurde gefördert durch den Europäischen Forschungsrat (ERC) sowie den österreichischen Fonds zur Förderung der wissenschaftlichen Forschung (FWF).

Publikation:
Quantum Entanglement of High Angular Momenta
Robert Fickler, Radek Lapkiewicz, William N. Plick, Mario Krenn, Christoph Schaeff, Sven Ramelow, Anton Zeilinger

Veröffentlicht in Science, Ausgabe vom 2. November 2012.

Weitere Informationen
Forschungsgruppe Quantenoptik, Quantennanophysik und Quanteninformation an der Fakultät für Physik der Universität Wien und Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften: http://www.quantum.at/

Vienna Center for Quantum Science and Technology (VCQ): http://vcq.quantum.at/

Wissenschaftlicher Kontakt
Dipl. Phys. Robert Fickler
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien, Fakultät für Physik
Institut für Quantenoptik und Quanteninformation (ÖAW)
Boltzmanngasse 3, 1090 Wien
T +43-1-4277-295 68
robert.fickler@univie.ac.at
Rückfragehinweis
Verena Bock
Sekretariat Anton Zeilinger
Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien, Fakultät für Physik
Institut für Quantenoptik und Quanteninformation (ÖAW)
Boltzmanngasse 3, 1090 Wien
T +43-1-4277-511 66
zeilinger-office@univie.ac.at

Alexandra Frey | Universität Wien
Weitere Informationen:
http://www.univie.ac.at
http://www.quantum.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
22.10.2019 | Universität Basel

nachricht Kompakt, effizient, robust und zuverlässig: FBH-Entwicklungen für den Weltraum
21.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen

22.10.2019 | Biowissenschaften Chemie

Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt

22.10.2019 | Biowissenschaften Chemie

Es war wirklich der Asteroid

22.10.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics