Weltrekord in der terrestrischen Funkübertragung

E-Band-Sender mit Parabolantenne. Die darin verbauten integrierten Schaltungen weisen besonders große Leistungsfähigkeit auf. © Universität Stuttgart / Parisa Harati

Den Inhalt einer handelsüblichen DVD in zehn Sekunden per Funk zu übermitteln, ist unvorstellbar schnell – und ein neuer Weltrekord der Datenübertragung. Mit einer Datenrate von 6 Gbit pro Sekunde über eine Entfernung von 37 Kilometern hat ein Forschungsverbund unter Beteiligung von Forschenden der Universität Stuttgart und des Fraunhofer-Institut für Angewandte Festkörperphysik IAF den Stand der Technik um den Faktor 10 übertroffen.

Durchgeführt wurde das Verbundprojekt ACCESS (Advanced E-Band Satellite Link Studies) von einer Forschungsgruppe um Prof. Ingmar Kallfass vom Institut für Robuste Leistungshalbleitersysteme (ILH) der Universität Stuttgart, dem Institut für Hochfrequenztechnik und Elektrotechnik (IHE) des KIT, der Radiometer Physics GmbH und dem Fraunhofer IAF.

Dem Team gelang die Rekord-Datenübertragung auf einer Strecke zwischen Köln und dem 36,7 km entfernten Wachtberg. Die Stationen standen auf dem 45-stöckigen Uni-Center in Köln und dem Gelände des Weltraumbeobachtungsradar TIRA am Fraunhofer-Institut für Hoch­frequenzphysik und Radartechnik (FHR) in Wachtberg.

Rekord durch Einsatz neuester Technologie

Die extrem hohe Datenrate von 6 Gbit/s erzielte die Gruppe durch leistungsfähige Sender und Empfänger bei einer Radiofrequenz von 71–76 GHz im für den terrestrischen und Satellitenfunk freigegebenen „E-Band“. Nur in diesem Frequenzbereich mit Millimeterwellen stehen die erforderlichen hohen Nutzbandbreiten zur Verfügung. Nur hier lassen sich die enormen Datenraten verwirklichen.

Eine weitere Schwierigkeit ist die Abschwächung der Signale über größere Entfernungen. Ent­sprechend stark muss gesendet werden, entsprechend leistungsfähig muss am Ende der Verstärker sein. Schlüssel zu der einzigartigen Kombination aus Gigabit-Datenrate und Höchstdistanz bilden die leistungsfähigen Sender und Empfänger in Form voll monolithisch integrierter Millimeterwellen-Schaltungen (MMICs).

Den Schaltungen liegen zwei innovative Transistortechnologien zugrunde, die der Projektpartner Fraunhofer IAF entwickelt und hergestellt hat. Im Sender werden die breitbandigen Signale mit Hilfe von Leistungsverstärkern auf Basis des neuartigen Verbindungshalbleiters Galliumnitrid auf eine vergleichsweise hohe Sendeleistung von bis zu 1 W gebracht. Eine hoch gerichtete Parabolantenne strahlt die Signale ab. Im Empfänger sind rauscharme Empfangsverstärker auf Basis von Höchstgeschwindigkeits-Transistoren, unter Verwendung von Indium-Gallium-Arsenid-Halbleiterschichten mit sehr hoher Elektronenbeweglichkeit, eingebaut. Sie sorgen für die Detektion der über die Entfernung äußerst stark abgeschwächten Signale.

Vielzahl an Anwendungsgebieten

Die Übertragung hoher Datenmengen per Funk über große Distanzen dient einer Vielzahl wichtiger Anwendungsgebiete: Die nächste Generation der Satellitenkommunikation erfordert einen immer größeren Datenfluss von Erdbeobachtungssatelliten zur Erde. Die Versorgung des ländlichen Raumes und entlegener Gebiete mit schnellem Internet ist bei einer Datenrate wie bei dem Versuch möglich. 250 Internet-Anschlüsse könnten mit 24 Mbit/s ADSL versorgt werden. Terrestrische Funkübertragung im E-Band eignet sich als kosteneffizienter Ersatz für das Verlegen von Glasfaser oder als Ad-hoc-Netz im Krisen- und Katastrophenfall, bis hin zur Verbindung von Basisstationen im Backhaul der Mobilkommunikation.

Bedarf ungebremst steigend

Dem ungebremst ansteigenden Bedarf an immer höheren Datenraten in fasergebundenen und drahtlosen Kommunikationsnetzen kann nur mit technologischen Innovationen bei der Netzinfrastruktur begegnet werden. Moderne Entwicklungen wie das Internet der Dinge und Industrie 4.0 stehen darüber hinaus erst an ihrem Anfang. Sie verlangen nach bisher nie dagewesenen aggregierten Datenmengen. Deren Verarbeitung und Übertragung in Cloud-basierten Diensten bringt die Kommunikationsinfrastruktur bereits heute an ihre Grenzen. Auch in der Satellitenkommunikation führen die Fortschritte in der Erdbeobachtung und Weltraumforschung sowie Pläne eines weltumspannenden Satellitennetzes zu bisher ungelösten Herausforderungen in der Kommunikations-Infrastruktur.

Das Projekt im Überblick

ACCESS wurde zum 30. April beendet und findet seine Fortsetzung im Nachfolgeprojekt ELIPSE (E-Band Link Platform and Test for Satellite Communication). Ziel war die nächste Generation von Kommunikations­sys­temen für die schnelle Anbindung von Satelliten. Eine weitere Anwendung liegt aber auch im terrestrischen Richtfunk.

Neben der Universität Stuttgart, dem Fraunhofer-Institut für Angewandte Festkörperphysik IAF und dem Karlsruher Institut für Technologie (KIT) ist der Industriepartner Radiometer Physics GmbH (A Rohde & Schwarz Company) beteiligt. Das Projekt wurde gefördert durch das Bundeministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages. Unterstützung leisteten das Fraunhofer FHR, das Uni-Center Köln und der Südwest-Rundfunk, die den Zugang zu ihren Gebäuden gewährten.

Michael Teiwes
Head of Public Relations
Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Tullastrasse 72, 79108 Freiburg, Germany
Phone: +49 761 5159-450
medien@iaf.fraunhofer.de
www.iaf.fraunhofer.de

Media Contact

Michael Teiwes Fraunhofer-Institut für Angewandte Festkörperphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer