Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein weiterer Schritt zu atomaren Speichern: Wie Leitungselektronen zwischen atomaren Bits vermitteln

02.02.2010
Wie die renommierte Zeitschrift "Nature Physics" berichtet, ist es Wissenschaftlern der Universität Hamburg unter der Leitung von Prof. Roland Wiesendanger gelungen, die Richtungsabhängigkeit der magnetischen Kopplung zwischen einzelnen Atomen auf Oberflächen direkt zu vermessen.

Die in Hamburg experimentell ermittelte Magnetisierungsausrichtung von atomaren Bits verschiedenen Abstands und verschiedener Orientierung stimmt dabei erstaunlich gut mit der magnetischen Kopplung überein, die von Wissenschaftlern des Forschungszentrums Jülich an einem Supercomputer mit einem aufwendigen Modell berechnet wurde.

Dies stellt einen weiteren wichtigen Schritt in Richtung magnetischer atomarer Datenspeicher und neuartiger Spintronik-Bauelemente dar. Die Forschungsarbeiten hierzu werden u.a. durch die Hamburger Landesexzellenz-Initiative und einen Sonderforschungsbereich der Deutschen Forschungsgemeinschaft gefördert.

Hervorgerufen durch die immer zunehmende Miniaturisierung elektronischer Geräte und die stetig wachsende Flut digitaler Daten wird beständig nach Möglichkeiten gesucht, den Platz für die kleinste Speichereinheit, ein Bit, zu reduzieren, um Datenspeicher mit immer höherer Kapazität herstellen zu können. Bei der magnetischen Speichertechnologie gibt es das ultimative Ziel, irgendwann einmal die Information eines Bits in der magnetischen Ausrichtung eines einzelnen Atoms speichern zu können. Magnetische Atome verhalten sich wie winzige Kompassnadeln, deren Magnetisierung entweder nach oben (1) oder unten (0) zeigen kann. Aufgrund deren geringer räumlichen Ausdehnung ergäben sich dadurch immens hohe Speicherdichten, die für Jahrzehnte das Speicherplatzproblem lösen würden. Allerdings gibt es auf dem Weg dorthin vor allem zwei grundlegende Probleme: (I) die atomaren Bits schalten bei Raumtemperatur in Bruchteilen einer Sekunde zwischen den zwei Zuständen (0) und (1), wodurch die gespeicherte Information verloren geht; (II) bei zu kleinen Abständen von wenigen Nanometern koppeln benachbarte Bits, was ebenfalls zu einem Datenverlust führen kann.

Mittels der Methoden der modernen Oberflächenphysik lassen sich atomare Bits auf eine extrem flache Oberfläche eines Metalls aufbringen, die als Modellsystem eines atomaren Datenspeichers dienen. Wie die Hamburger Wissenschaftler schon früher demonstriert haben, kann das atomare Bit mit der magnetisch beschichteten Spitze eines Rastertunnelmikroskops ausgelesen werden.

Bereits vor einem halben Jahrhundert schlugen die Theoretiker Ruderman, Kittel, Kasuya und Yosida eine neue Art der Kopplung zwischen solchen magnetischen Atomen vor, die neben dipolarer Kopplung und direktem magnetischen Austausch als dritte fundamentale Wechselwirkung den Magnetismus im Festkörper bestimmt. Kommt ein Leitungselektron in die Nähe eines magnetischen Atoms, richtet es seinen Spin nach diesem aus. Bewegt sich das Elektron nun weiter durch den Festkörper, kann die Spinpolarisation des Elektrons wiederum eine Ausrichtung des magnetischen Momentes eines der nächsten Atome bewirken. Dadurch wird eine magnetische Kopplung hervorgerufen, die je nach Abstand zu paralleler oder antiparalleler Ausrichtung benachbarter Bits führt. Die nach den vier Entdeckern benannte RKKY-Kopplung ist vor allem in Festkörpern, die eine geringe Menge magnetischer Atome enthalten, aber auch in Seltenerdmetallen, die dominierende der drei Wechselwirkungen.

Die Leitungselektronen als Vermittler der RKKY-Wechselwirkung bestimmen dabei die Stärke und Richtungsabhängigkeit der Kopplung. Bisher wurden vereinfachende theoretische Modelle benutzt, mit denen die Kopplungsstärke erfolgreich in Volumenmaterialien vorausgesagt werden konnte. Nach diesen Modellen ist die Kopplung nur vom Abstand der zwei magnetischen Atome, nicht aber von ihrer Lage relativ zu den Kristallrichtungen abhängig. Obwohl eine Orientierungsabhängigkeit aufgrund der Kristallstruktur erwartet wurde, ist es experimentell bisher nicht gelungen, einen direkten Beweis dafür zu erbringen. Dies lag vor allem an der Unzulänglichkeit der bisher benutzten magnetischen Ausleseverfahren, die räumlich über einen großen Bereich und damit verschiedene Ausrichtungen mitteln.

Wie in der aktuellen Ausgabe der Zeitschrift "Nature Physics" berichtet wird, ist es nun in einer Zusammenarbeit von Wissenschaftlern der Universität Hamburg und des Forschungszentrums Jülich gelungen, die Richtungsabhängigkeit der RKKY-Kopplung direkt zu vermessen und mit einem aufwendigen Modell zu vergleichen [1]. Die in Hamburg experimentell ausgelesene Magnetisierungsausrichtung in Paaren von atomaren Bits verschiedenen Abstands und verschiedener Orientierung stimmt dabei erstaunlich gut mit der auf dem Supercomputer in Jülich gerechneten Kopplung überein. Es zeigt sich eine starke Abhängigkeit der RKKY-Kopplung von der Ausrichtung der zwei Bits, die man anhand der einfacheren Modelle nicht beschreiben kann.

Diese Erkenntnisse haben schließlich auch einen großen praktischen Nutzen für die zukünftige Entwicklung von Nanostrukturen aus einer größeren Anzahl einzelner magnetischer Atome. Mittels der Spitze des Rastertunnelmikroskops lassen sich die magnetischen Atome in einer nahezu beliebigen Struktur zusammenschieben. Mithilfe der gewonnenen Karte der RKKY-Kopplung lässt sich daher eine Nanostruktur mit maßgeschneiderter magnetischer Kopplung entwerfen und verwirklichen. Solche Nanostrukturen könnten interessante Eigenschaften im Hinblick auf zukünftige spintronische Bauelemente haben. Eine andere vielversprechende Möglichkeit besteht in ihrer Anwendung als Modellsystem für neuartige Rechenverfahren, die die Quantennatur der Bits ausnutzen (z. B. in Quantencomputern).

[1] Lihui Zhou, Jens Wiebe, Samir Lounis, Elena Vedmedenko, Focko Meier, Stefan Blügel, Peter H. Dederichs and Roland Wiesendanger: "Strength and directionality of surface Ruderman-Kittel-Kasuya-Yosida interaction mapped on the atomic scale", Nature Physics, published online: 31 January 2010.

doi:10.1038/nphys1514

Weitere Informationen:
Dipl.-Chem. Heiko Fuchs
Öffentlichkeitsarbeit
Department Physik
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nature.com/nphys/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker entdecken neuen Transportmechanismus von Nanopartikeln durch Zellmembranen
14.12.2018 | Universität des Saarlandes

nachricht Tanz mit dem Feind
12.12.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungsnachrichten

Rittal heizt ein in Sachen Umweltschutz - Rittal Lackieranlage sorgt für warme Verwaltungsbüros

14.12.2018 | Unternehmensmeldung

Krankheiten entstehen, wenn das Netzwerk von regulatorischen Autoantikörpern aus der Balance gerät

14.12.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics