Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weg vom Silizium - hin zum Germanium?

17.02.2010
Die Verwendung von Germanium als Grundmaterial für elektronische Schalter würde die Herstellung von schnelleren Chips mit einem höheren Integrationsgrad ermöglichen. Jedoch gibt es dabei noch eine Reihe von Problemen zu lösen.

Bisher war es nicht möglich, auf Germanium-Basis einen bestimmten Typ von Transistoren (NMOS) mit einem technologisch interessanten Integrationsgrad herzustellen. Zwei neuartige Verfahren, die Wissenschaftler aus dem FZD gemeinsam mit internationalen Kollegen erfolgreich einsetzten, schaffen hier Abhilfe.

Mit Germanium und einigen andere Halbleitern könnte man höhere Schaltgeschwindigkeiten als mit Silizium erreichen. Germanium ist besonders attraktiv, da es sich gut in existierende technologische Abläufe integrieren ließe. Es war das Grundmaterial der ersten Transistor-Generationen, bevor es Ende der 1960er Jahre von Silizium abgelöst wurde. Der Grund dafür waren die exzellenten elektronischen Eigenschaften der Grenzfläche zwischen dem Halbleiter Silizium und seinem passivierenden und isolierenden Oxid. Dieser Vorteil kann jedoch bei weiterer Verkleinerung der Transistoren im integrierten Schaltkreis nicht mehr genutzt werden, da dann das Oxid durch sogenannte high-k Materialien ersetzt werden muss. Damit stellt sich auch die Frage nach dem Grundmaterial neu.

Durch das Einbringen von Fremdatomen wird die Leitfähigkeit von Halbleitern gezielt verändert. Eine Möglichkeit bietet hier die Ionen-Implantation (Ionen sind geladene Atome) mit nachfolgender Wärmebehandlung, Ausheilung genannt. Die Ausheilung des Halbleiter-Kristalls ist notwendig, da das Material während der Implantation stark geschädigt wird. Erst danach erhält man die gewünschten elektrischen Eigenschaften. Während mit diesen Methoden p-Kanal-Transistoren (PMOS) auf Germanium-Basis mit Abmessungen hergestellt werden können, die einer zukünftigen 22-Nanometer-Technologie entsprechen, ist das für n-Kanal-Transistoren (NMOS) bisher noch nicht gelungen. Der Grund hierfür ist die starke räumliche Umverteilung der Phosphor-Fremdatome, die zur Herstellung der n+-Gebiete verwendet werden müssen.

Physikern vom Forschungszentrum Dresden-Rossendorf ist es gelungen, nach der Ionen-Implantation von Phosphor in Germanium mit Hilfe einer speziellen Ausheil-Methode die Qualität des Germanium-Kristalls wiederherzustellen sowie gute elektrische Eigenschaften zu erzielen, ohne dass eine starke Umverteilung der Phosphor-Atome auftritt. Dazu wurde die Germanium-Probe mit einem kurzen Lichtblitz von nur wenigen Millisekunden Länge erhitzt. Dieser Zeitraum ist zu kurz für die sonst bei der Ausheilung beobachtete Diffusion der Phosphor-Atome. Die Lichtblitze werden in einer am FZD entwickelten Blitzlampen-Anlage erzeugt. Die Analyse der elektrischen und strukturellen Eigenschaften der Phosphor-dotierten Schichten im Germanium erfolgte in enger Zusammenarbeit mit dem belgischen Mikroelektronik-Forschungszentrum IMEC in Leuven und dem Dresdner Fraunhofer-Center Nanoelektronische Technologien (CNT).

Eine alternative Methode zur Unterdrückung der Diffusion von Phosphor in Germanium untersucht ein internationales Team, dem neben anderen Wissenschaftlern aus Deutschland, Dänemark und den USA auch Physiker aus dem FZD angehören. Nach der Ionen-Implantation von Phosphor in Germanium wird die Probe erhitzt und dann mit Protonen bestrahlt. Es zeigt sich, dass die Protonen-Bestrahlung zu einer Reduktion der Phosphor-Diffusion führt. Die Ergebnisse dieser Experimente werden mit dem Einfluss bestimmter Gitterdefekte (Zwischengitter-Atome) erklärt, die jene Gitterdefekte (Leerstellen), welche für die Beweglichkeit der Phosphor-Atome verantwortlich sind, vernichten.

Die Experimente der Rossendorfer Physiker und ihrer Kollegen zeigen, dass es möglich ist, auf Germanium-Basis n-Kanal-Transistoren (NMOS) herzustellen, deren Abmessungen dem fortgeschrittensten Integrationsgrad entsprechen.

Veröffentlichungen
C. Wündisch, M. Posselt, B. Schmidt, V. Heera, T. Schumann, A. Mücklich, R. Grötzschel, W. Skorupa, T. Clarysse, E. Simoen, H. Hortenbach, "Millisecond flash lamp annealing of shallow implanted layers in Ge", in: Applied Physics Letters. 95 (2009), 252107.

DOI: 10.1063/1.3276770.

H. Bracht, S. Schneider, J. N. Klug, C. Y. Liao, J. Lundsgaard Hansen, E. E. Haller, A. Nylandsted Larsen, D. Bougeard, M. Posselt, C. Wündisch, "Interstitial-Mediated Diffusion in Germanium under Proton Irradiation", in: Physical Review Letters 103 (2009), 255501,

DOI: 10.1103/PhysRevLett.103.255501.

Weitere Informationen
Dr. Matthias Posselt / Clemens Wündisch
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3279 / - 3032
E-Mail: m.posselt@fzd.de / c.wuendisch@fzd.de
Pressekontakt
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400 | 01328 Dresden
Tel.: 0351 260 - 2450 | 0160 969 288 56
E-Mail: presse@fzd.de | http://www.fzd.de
Das FZD im Überblick
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Gesamtbudget von mehr als 80 Mio. Euro (2009) und beschäftigt rund 800 Personen. Anfang 2011 wird das FZD in die Helmholtz-Gemeinschaft Deutscher Forschungszentren wechseln.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kartographie eines fernen Sterns
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

nachricht Organische Halbleiter: Ein Transistor für alle Fälle
19.03.2019 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kartographie eines fernen Sterns

Der am Leibniz-Institut für Astrophysik Potsdam (AIP) gefertigte Spektrograph PEPSI zeigt erste Aufnahmen der Struktur des Magnetfelds auf der Oberfläche eines weit entfernten Sterns. Mittels innovativer Verfahren lassen sich damit neue Erkenntnisse über die Vorgänge auf der Sternoberfläche gewinnen. Die Ergebnisse stellte ein Wissenschaftlerteam nun in der Fachzeitschrift Astronomy & Astrophysics vor.

Selbst mit den größten Teleskopen erscheinen die Oberflächen entfernter Sterne normalerweise nur als Lichtpunkte. Eine detaillierte Auflösung wird erst mittels...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Oszillation im Muskelgewebe

Wenn ein Muskel wächst oder eine Verletzung in ihm ausheilt, verwandelt sich ein Teil seiner Stammzellen in neue Muskelzellen. Wie dieser Prozess über zwei oszillierend hergestellte Proteine gesteuert wird, beschreibt nun das MDC-Team um Carmen Birchmeier im Fachjournal „Genes & Development“.

Die Stammzellen des Muskels müssen jederzeit auf dem Sprung sein: Wird der Muskel beispielsweise beim Sport verletzt, ist es ihre Aufgabe, sich so rasch wie...

Im Focus: Das Geheimnis des Vakuums erstmals nachweisen

Neue Forschungsgruppe an der Universität Jena vereint Theorie und Experiment, um erstmals bestimmte physikalische Prozesse im Quantenvakuum nachzuweisen

Für die meisten Menschen ist das Vakuum ein leerer Raum. Die Quantenphysik hingegen geht davon aus, dass selbst in diesem Zustand niedrigster Energie noch...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Ausprobieren und diskutieren

19.03.2019 | Veranstaltungen

Wissenschaftliche Tagung zur Gesundheit von Meeressäugern

18.03.2019 | Veranstaltungen

Tuberkulose - eine der ältesten Krankheiten der Menschheit eliminieren!

15.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kartographie eines fernen Sterns

19.03.2019 | Physik Astronomie

Schlauer Handschuh für Industrie 4.0: Forscher verbinden die Hand mit der virtuellen Welt

19.03.2019 | HANNOVER MESSE

Das neue Original für Industrie 4.0 - Rittal mit neuen Gehäuseserien AX und KX

19.03.2019 | HANNOVER MESSE

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics