Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zur Entdeckung neuer langlebiger Elemente

11.02.2010
Erstmalig Einsatz von "Ionen-Fallen" zur Untersuchung von schwersten Elementen

Neben den auf der Erde natürlich vorkommenden 92 Elementen ist es Wissenschaftlern gelungen, noch über 20 weitere chemische Elemente zu entdecken. Sechs davon wurden beim GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt entdeckt. Sie konnten künstlich an Teilchenbeschleunigern hergestellt werden.

Die künstlichen Elemente sind alle sehr kurzlebig, das heißt sie zerfallen nach Bruchteilen von Sekunden. Wissenschaftler sagen jedoch noch schwerere Elemente voraus, die sehr langlebig sind, das heißt möglicherweise erst nach mehreren Jahren zerfallen. Sie werden als Insel der Stabilität bezeichnet. Am GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt haben Wissenschaftler nun eine Messapparatur entwickelt und aufgebaut, mit der die Entdeckung solcher langlebiger Elemente erstmals möglich werden könnte. Dies berichtet die renommierte naturwissenschaftliche Fachzeitschrift Nature.

Einem internationalen Team von Wissenschaftlern um Michael Block gelang es, Atome des Elements 102, Nobelium, und damit erstmals überhaupt ein so genanntes superschweres Element in einer Ionen-Falle einzufangen. Dadurch konnten sie die Masse von Nobelium-Atomen mit nie dagewesener Genauigkeit messen. Die Masse ist eine grundlegende Eigenschaft von Atomen, aus der sich unmittelbar die Bindungsenergie, die das Atom zusammenhält, berechnen lässt. Daraus wiederum lässt sich seine Lebensdauer bzw. Stabilität ermitteln. Der eigentliche Zerfall muss nicht wie bei früheren Methoden abgewartet werden. Deshalb können in einer Ionen-Falle Elemente mit extrem langen Lebensdauern nachgewiesen werden. Auf längere Sicht erhoffen sich die Wissenschaftler bis zur Insel der Stabilität, die im Bereich um die Elemente 114 bis 120 vermutet wird, vorzudringen.

"Die präzise Messung der Masse von Nobelium mit unserem neuen Messaufbau Shiptrap war ein erster erfolgreicher Schritt. Unser Ziel ist es nun, den Messaufbau weiter zu verfeinern, sodass wir zu immer schwereren Elementen vorstoßen können, um vielleicht eines Tages die Insel der Stabilität zu erreichen", sagt Michael Block, der Leiter der Experimentiergruppe am GSI Helmholtzzentrum.

Für seine Messungen baute das Team um Michael Block eine komplexe Apparatur, die Ionen-Falle Shiptrap, auf und kombinierte sie mit dem Geschwindigkeitsfilter Ship, mit dem bei GSI bereits sechs kurzlebige Elemente entdeckt werden konnten. Das Nobelium erzeugten sie, indem sie eine Blei-Folie mit Kalzium-Ionen aus dem GSI-Beschleuniger beschossen. Danach trennten sie das erzeugte Nobelium mit Ship von anderen Reaktionsprodukten ab. In der Shiptrap-Apparatur wurde das Nobelium zuerst in einer mit Gas gefüllten Zelle abgebremst und anschließend in einer so genannten Penning-Falle als Ion eingefangen. Durch Magnetfelder in der Falle gehalten, kreiste das Nobelium-Ion auf einer winzigen Spiralbahn mit einer bestimmten Frequenz, aus der sich direkt die Masse berechnen ließ. Die Massenbestimmung war bis auf fünf Millionstel Prozent genau. Die Masse und damit die Bindungsenergie kann somit viel genauer als bisher und erstmals direkt, also ohne Zuhilfenahme von theoretischen Annahmen, bestimmt werden.

An den Experimenten beteiligt waren neben GSI das Max-Planck-Institut für Kernphysik Heidelberg, die Universitäten Gießen, Greifswald, Heidelberg, Mainz, München, Padua (Italien), Jyväskylä (Finnland) und Granada (Spanien) sowie das PNPI (Petersburg Nuclear Physics Institute) und das JINR (Joint Institute for Nuclear Research) in Russland.

Dr. Ingo Peter | idw
Weitere Informationen:
http://www.nature.com/nature/journal/v463/n7282/full/nature08774.html
http://www.nature.com/nature/journal/v463/n7282/full/463740a.html
http://www.gsi.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics