Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasser verstärkt Strahlenschäden

24.07.2018

Radioaktive Strahlung schädigt Gewebe auf mehr Wegen als bislang bekannt. Energie der ionisierenden Strahlen kann nämlich zunächst in Wassermolekülen deponiert und dann an benachbarte Biomoleküle abgegeben werden, wie Physiker des Heidelberger Max-Planck-Instituts für Kernphysik festgestellt haben. Durch den Energietransfer auf das organische Molekül, entstehen Elektronen und geladene Moleküle, die weitere Schäden in der näheren Umgebung verursachen können. Dadurch ist die biologische Wirkung dieses intermolekularen Coulombzerfalls sehr hoch, sodass es etwa im DNA-Molekül des Erbguts zu irreparablen Brüchen kommen kann.

Was für einen gesunden Organismus fatal sein kann, ist bei der Strahlentherapie von Tumorgewebe gerade das Ziel: Energiereiche Strahlung löst in biologischen Zellen zahlreiche chemische Reaktionen aus – mit zerstörerischer Wirkung für Biomoleküle. Alpha-, Beta-, Gamma- und intensive Röntgenstrahlen, die umgangssprachlich als radioaktive Strahlung bezeichnet werden, schlagen aus Biomolekülen reaktive Teilchen wie Radikale, Ionen und langsame Elektronen heraus.


Künstlerische Darstellung des ICD in einem THF-Wasser-Dimer als Modell für einen Baustein des DNS-Moleküls (Hintergrund).

Grafik: Xueguang Ren/MPI für Kernphysik

Diese schädigen das Erbgut und andere Teile der Zelle. So können sie einen oder gar beide Stränge in der Strickleiterstruktur des DNA-Moleküls brechen. Besonders fatal wirken dabei die vielen Elektronen, die ionisierende Strahlung auf ihrem Weg durch das Gewebe aus Biomolekülen herausschlägt.

Sie können in einem lawinenartigen Effekt weitere langsamere Elektronen freisetzen, die aber immer noch genügend Energie besitzen, um Biomoleküle kaputt zu machen. Einzelne solcher Schäden an Biomolekülen können Zellen zwar reparieren, mit einer zu großen Zahl werden sie nicht mehr fertig.

„Wir haben jetzt einen bisher unbekannten Mechanismus für Strahlenschäden in Biomolekülen beobachtet“, sagt Alexander Dorn, der am Max-Planck-Institut für Kernphysik eine Forschungsgruppe leitet. Dabei spielt die Hydrathülle, also die Wasserhülle eines Biomoleküls die entscheidende Rolle: Jedes Basenpaar der DNA etwa, das einer Sprosse der molekularen Strickleiter entspricht, ist von einer Hydrathülle aus bis zu 22 Wassermolekülen umgeben.

Ein relativ langsames Elektron, wie es ionisierende Strahlung im Gewebe erzeugt, kann aus einem Wassermolekül dieser Hülle ein Elektron herausschlagen. In das entstehende Loch fällt ein anderes Elektron aus dem Wassermolekül, wobei Energie frei wird.

Diese Energie kann dann das Biomolekül sehr schnell ionisieren. Diesen Prozess nennen Physiker intermolekularen Coulombzerfall, den Lorenz Cederbaum von Universität Heidelberg 1997 theoretisch vorhergesagt hat und der inzwischen in vielen Experimenten nachgewiesen wurde.

Letztlich erzeugt ein Elektron mit relativ wenig Energie, beim intermolekularen Coulombzerfall also fünf reaktive Produkte: drei noch energieärmere Elektronen sowie die energiereichen Ionen des Wassers und des Biomoleküls. Diese Produkte können weitere Schäden anrichten, und zwar besonders gravierende. „Weil gleich mehrere reaktive Teilchen in einem Volumen, das etwa so groß ist wie ein Protein oder ein DNA-Molekül, entstehen, können sie Biomoleküle irreparabel schädigen“, sagt Alexander Dorn.

Auch wenn der Mechanismus im Vergleich zur direkten Ionisierung von Biomolekülen relativ selten ist, sollten Biophysiker ihn wegen der relativ großen Schäden, die dabei auftreten können, in ihren Modellen berücksichtigen, wenn sie die Auswirkungen von ionisierender Strahlung auf Gewebe berechnen.

Als Modell für ein DNA-Molekül mit Hydrathülle untersuchten die Heidelberger Wissenschaftler die schwache Allianz – Chemiker sprechen von einem Komplex – aus einem Molekül Tetrahydrofuran und einem Wassermolekül. Das organische Molekül ähnelt dem Zuckermolekül Desoxyribose, einem der Bausteine der DNA-Strickleiter.

Erzeugt ein Elektronenstoß im Sauerstoff-Atom des Wassermoleküls in dieser chemischen Allianz ein Loch, so kann das organische Molekül über den intermolekularen Coulombzerfall ionisiert werden. Weil sich die nun jeweils positiv geladenen Wasser- und Tetrahydrofuran-Moleküle abstoßen, bricht die schwache Bindung auf und es kommt zur sogenannten Coulombexplosion des Komplexes.

Die Experimente machten die Heidelberger Forscher mit einem Reaktionsmikroskop. „Damit können wir aus einem einzelnen Coulomb-Zerfall beide Ionen und wenigstens ein Elektron nachweisen“, sagt Xueguang Ren vom Max-Planck-Institut für Kernphysik, der die experimentellen Daten aufgenommen hat. Wissenschaftler der Universität Irkutsk in Russland unterfütterten die Experimente mit theoretischen Studien, indem sie die Struktur des Komplexes aus Tetrahydrofuran und Wasser sowie den Ablauf des Coulombzerfalls berechneten.

So untersuchten die Forscher, wie oft der Coulombzerfall im Vergleich zu einem anderen Prozess auftritt, der zum gleichen Ergebnis führt. Denn ein ursprüngliches, relativ energiereiches Elektron kann nacheinander auch das Wasser- und das Tetrahydrofuran-Molekül ionisieren. Die Physiker stellten jedoch fest, dass der Coulombzerfall etwa fünfmal wahrscheinlicher ist als die Doppelionisierung durch zwei Stöße des ursprünglichen Elektrons.

„Damit dürften auch die Strahlenschäden durch die mehrfache Ionisation an nah beieinander liegenden Stellen eines Biomoleküls beim Coulombzerfall fünfmal größer sein“, sagt Xueguang Ren. „Wir erwarten, dass dieser Mechanismus generell ein verbreitetes Phänomen in schwach gebundenen organischen Systemen ist und einen wichtigen Mechanismus für Strahlenschäden in hydratisierten Biomolekülen wie DNA darstellt.“

Wissenschaftliche Ansprechpartner:

Dr. Alexander Dorn
Max-Planck-Institut für Kernphysik
Tel.: +49 6221 516-513
E-Mail: dornalex@mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
Max-Planck-Institut für Kernphysik
Tel.: +49 6221 516-380
E-Mail: Thomas.Pfeifer@mpi-hd.mpg.de

Originalpublikation:

Experimental evidence for ultrafast intermolecular relaxation processes in hydrated biomolecules
Xueguang Ren, Enliang Wang, Anna D. Skitnevskaya, Alexander B. Tromov, Kirill Gokhberg, and Alexander Dorn
Nature Physics, 23. Juli 2018; doi:10.1038/s41567-018-0214-9

Weitere Informationen:

https://www.nature.com/articles/s41567-018-0214-9 Originalpublikation
https://www.mpi-hd.mpg.de/mpi/de/pfeifer/pfeifer-division-home/ Abteilung Quantendynamik und -kontrolle am MPIK
https://www.mpi-hd.mpg.de/mpi/en/news/meldung/detail/drahtlose-kommunikation-zwi... Presseinformation zum interatomaren Coulombzerfall (MPIK, 02.08.2013)

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Moleküle im Laserfeld wippen
17.01.2019 | Forschungsverbund Berlin e.V.

nachricht Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern
16.01.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leistungsschub für alle Omicron Laser

17.01.2019 | Messenachrichten

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungsnachrichten

Mit Blutgefäßen aus Stammzellen gegen Volkskrankheit Diabetes

17.01.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics