Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was macht der Kristall, wenn man ihn spaltet?

02.02.2018

Auf verblüffende Weise können sich Atome reorganisieren, wenn man einen Kristall entlang bestimmter Richtungen spaltet. An der TU Wien konnte das nun sichtbar gemacht werden.

Die bemerkenswerte Festigkeit von Kristallen lässt sich auf atomarer Ebene leicht erklären: Positiv und negativ geladene Teilchen sitzen abwechselnd nebeneinander, in einer bestimmten geometrischen Anordnung, die sich unzählige Male wiederholt. Zwischen positiven und negativen Ionen im Kristall herrschen starke Anziehungskräfte, durch sie wird der Kristall zusammengehalten.


Die Labyrinth-Struktur auf der Oberfläche des Kristalls

TU Wien


Das Team: Michele Reticcioli (Universität Wien), Jan Hulva, Ulrike Diebold, Martin Setvin, Michael Schmid (alle TU Wien), v.l.n.r.

TU Wien

Doch wie sieht das auf der Oberfläche des Kristalls aus? Das hängt von der Richtung ab, in der man den Kristall schneidet. Dabei kann es zu komplizierten Effekten kommen, die sich auch für chemische Anwendungen nutzen lassen. Vermutungen dazu gab es schon lange – an der TU Wien gelang es nun, diese Effekte mit Rastertunnelmikroskopen und Rasterkraftmikroskopen abzubilden.

Ihre Daten konnten nun, gemeinsam mit Computerberechnungen der Universität Wien, eine Reihe bemerkenswerter Phänomene erklären. Untersucht wurde Kaliumtantalat, ein Kristall aus der Gruppe der Perovskite. Veröffentlicht wurden die Ergebnisse nun im Fachjournal „Science“, nützlich könnten sie für Technologien wie etwa die Gewinnung von Wasserstoff sein.

Gerade oder diagonal geschnitten

Etwas vereinfacht kann man sich die positiven und negativen Ladungen im Kristall vorstellen wie die schwarzen und weißen Felder auf einem Schachbrett: Entlang der Zeilen und Spalten wechseln sich schwarze und weiße Felder ab, doch wenn man das Muster entlang der Diagonalen betrachtet, sieht man abwechselnd rein schwarze und rein weiße Reihen.

Dasselbe kann man (in drei Dimensionen) im Kristall betrachten: „Spaltet man einen kubischen Kristall entlang einer passenden Richtung, dann müsste man, naiv betrachtet, eigentlich ausschließlich positive oder ausschließlich negative Ladungen an der Oberfläche finden – doch so ein Zustand wäre hochgradig instabil“, erklärt Prof. Ulrike Diebold, die Leiterin der Forschungsgruppe für Oberflächenphysik am Institut für Angewandte Physik der TU Wien.

In einem solchen Kristall, der aus rein positiv und rein negativ geladenen Schichten bestünde, würde sich bereits in einer kleinen Materialprobe eine gewaltige elektrische Spannung von Millionen Volt ergeben – man spricht von der „polaren Katastrophe“. Um das zu vermeiden, müssen sich die Ladungsträger irgendwie umorganisieren, doch wie sie das machen, war bisher nicht ganz klar.

„Es gibt unterschiedliche Möglichkeiten, wie die Oberfläche reagieren kann, wenn wir einen Kristall so spalten“, sagt Martin Setvin, der Erstautor der Publikation. „Die Elektronen können sich an bestimmten Stellen sammeln, es kann zu Verformungen des Kristallgitters kommen, es kann passieren, dass sich Atome von außen an die Schnittstelle anlagern.“

Von der Inselgruppe zum Labyrinth

Was man unter dem Rastertunnelmikroskop jedenfalls feststellen kann: Die Teilung des Kristalls verläuft nicht exakt zwischen einer positiv und einer negativ geladenen Schicht. Stattdessen bricht der Kristall zwischen zwei positiv geladenen Schichten, die Hälfte der negativ geladenen Schicht dazwischen geht auf die eine Seite, die andere Hälfte auf die andere. Diese negativen Inseln, die sich auf jeder Seite spontan ausbilden, bedecken genau die Hälfte der Oberfläche – somit ist die Gesamtoberfläche insgesamt elektrisch neutral.

Diese Inseln zeigen ein interessantes, unerwartetes Verhalten: Zunächst nehmen sie zufällige Formen an, ähnlich wie Inselgruppen im Meer. Doch wenn man die Temperatur der Oberfläche erhöht, werden die Atome mobiler und beginnen, ein zackiges Muster aus geraden Linien zu bilden, das am Ende aussieht wie ein Labyrinth. Die „Mauern“ dieses Labyrinths sind nur ein Atom hoch und vier bis fünf Atome breit, wie man auf den Mikroskop-Aufnahmen leicht sehen kann. Berechnungen zeigen, dass tatsächlich genau das die energetisch stabilste Konfiguration ist.

„Diese labyrinthartigen Strukturen haben technisch höchst vielversprechende Eigenschaften“, sagt Ulrike Diebold. „Das ist genau das was man will: Winzige Strukturen, in denen starke elektrische Felder auf atomarer Skala auftreten.“ Man kann sie etwa nutzen, um chemische Reaktionen zu ermöglichen, die nicht von alleine ablaufen würden – etwa das Spalten von Wasser, um Wasserstoff zu gewinnen.

„Solche Technologien kann man nur entwickeln, wenn es gelingt, die atomaren Vorgänge direkt zu beobachten, zu untersuchen und zu verstehen“, betont Martin Setvin. „Deshalb ist für uns die Rasterkraft- und Rastertunnelmikroskopie so wichtig. Erst durch hochauflösende Bilder, auf denen man einzelne Atome beobachten kann, lässt sich verstehen, welche komplizierten Vorgänge auf der Kristalloberfläche ablaufen.“
Das Rasterkraft-Tunnelmikroskop konnte mit den Mitteln des Wittgenstein-Preises (vergeben vom österreichischen Wissenschaftsfonds FWF) angeschafft werden, mit dem Diebold 2013 ausgezeichnet wurde.

Kontakt:

Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13425
ulrike.diebold@tuwien.ac.at

Martin Setvin, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13470
martin.setvin@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erste Beweise für Quelle extragalaktischer Teilchen
13.07.2018 | Technische Universität München

nachricht MAGIC-Teleskope finden Entstehungsort von seltenem kosmischen Neutrino
13.07.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics