Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wärmestrahlung bei kleinsten Teilchen

22.06.2018

Wissenschaftlern aus Greifswald und Heidelberg ist es gelungen, zeitaufgelöste Messungen der inneren Energieverteilung gespeicherter Clusteranionen durchzuführen. Die dazu verwendeten Clusteranionen bestehen aus vier neutralen Kobaltatomen und einem Elektron. Der Physiker Christian Breitenfeldt von der Universität Greifswald stellt zusammen mit seinen Kollegen vom Max-Planck-Institut für Kernphysik in Heidelberg diese direkte Beobachtung des Wärmestrahlungsaustauschs der kleinen Teilchen mit ihrer Umgebung in der Zeitschrift Physical Review Letters vor.

Man muss eine warme Herdplatte nicht erst anfassen, um die Hitze zu spüren. Bei höheren Temperaturen sieht man sie rot glühen. Auch wenn sie weniger heiß ist, sendet sie Licht aus – dann allerdings nicht im sichtbaren sondern im infraroten Wellenlängenbereich. Das heißt, die elektromagnetischen Wellen sind für uns Menschen nicht sichtbar.


Schematische Veranschaulichung der verzögerten Abgabe des überzähligen Elektrons nach der Photoanregung eines vieratomigen, negativ geladenen Kobaltclusters.

Grafik: Lutz Schweikhard.

Für Gegenstände des täglichen Lebens bis hin zum Sonnenlicht kennt man die Strahlungsgesetze schon seit Max Planck, der für seine Untersuchungen den Nobelpreis für Physik des Jahres 1918 bekam. Einzelne Atome für sich genommen senden Strahlung nach ganz anderen, aber ebenfalls wohlbekannten Gesetzen aus. Dagegen ist der Verlauf der Strahlungskühlung für Cluster – Nanoteilchen aus wenigen Atomen oder Molekülen – noch immer nicht vollständig verstanden.

Mit dieser Thematik befasst sich eine Abteilung des Max-Planck-Instituts für Kernphysik in Heidelberg in einer Kollaboration mit der Universität Greifswald. Der Greifswalder Doktorand Christian Breitenfeldt aus der Arbeitsgruppe von Prof. Lutz Schweikhard nutzt für seine Untersuchungen die elektrostatischen Ionenstrahlfalle CTF (Cryogenic Trap for Fast Ion Beams) der Abteilung von Prof. Klaus Blaum unter der Federführung von Prof. Andreas Wolf und Dr. Sebastian George.

Für ihre Untersuchungen wählten sie Nanosysteme aus vier Kobaltatomen. Diese Kobaltcluster wurden mit einem zusätzlichen Elektron als negativ geladene Ionen erzeugt und in der CTF eingefangen. Die Falle besteht im Wesentlichen aus zwei ionenoptischen Spiegeln, zwischen denen die gespeicherten Ionen in ultrahohem Vakuum hin und her pendeln – ganz ähnlich wie in einem von der Greifswalder Gruppe entwickelten Gerät, das am CERN zur Präzisionsmassenmessung exotischer Atomkerne eingesetzt wird.

Falls die Nanoteilchen eine gewisse Wärmeenergie besitzen, d.h. eine „innere Energie“ in Form von Schwingungen der Atome, kann sich diese auch auf das Elektron übertragen. Dies führt dazu, dass sich das Elektron vom Cluster löst – je nach Energiemenge früher oder später. Damit ist der Cluster nicht mehr geladen, wird nicht länger gespeichert und wird nach dem Verlassen der Ionenfalle mit einem Detektor nachgewiesen.

Ziel der Experimente war es, die Ablösung des überzähligen Elektrons der negativen Cluster zeitaufgelöst zu beobachten und somit auf die dafür nötige innere Energie des Clusters zurückzuschließen. Dazu wurden die Cluster mit Laserlicht bei verschiedenen Wellenlängen bestrahlt, d.h. mit unterschiedlich energetischen Photonen. Die Elektronenabgabe als Funktion der Laserwellenlänge diente als Sonde für die innere Energieverteilung der gespeicherten Kobaltcluster.

Der Aufbau erlaubte die Ionenuntersuchung mit jeweils 120 Messungen über eine Zeitspanne von sechs Sekunden. Es wurde also 20 Mal pro Sekunde die Verteilung der inneren Energie der Cluster bestimmt. Damit konnte der zeitliche Verlauf der Wärmeenergie verfolgt werden. Dieser wiederum ermöglichte Rückschlüsse auf den Energieaustausch durch Wärmestrahlung mit der Umgebung, hier der Vakuumapparatur, die sich bei den Untersuchungen auf Zimmertemperatur befand.

Hatten die Cluster schon bei Speicherbeginn eine hohe innere Energie, so konnten die Wissenschaftler im Laufe der Zeit eine Abkühlung beobachten. Wurden die Cluster dagegen aus einer besonders kalten Quelle geliefert, die eine Gruppe der Universität Kaiserlautern zu den Experimenten beisteuerte, so wärmten sich Cluster auf. In beiden Fällen strebten sie zu einem Gleichgewicht des Wärmeflusses, d.h. zur Umgebungstemperatur des experimentellen Aufbaus.

Kühlung und Heizung durch Wärmestrahlung sind wichtig für die Stabilität von Nanoteilchen im freien Raum. Unter Weltraumbedingungen – im „interstellaren“ Raum zwischen den Sternen – können die Umgebungstemperaturen sehr kleine Werte erreichen. Nach den nun vorliegenden ersten Resultaten wird daher die Untersuchung dieses Prozesses auch auf viel kleinere Temperaturen von nur wenigen Grad über dem absoluten Nullpunkt ausgedehnt.

Dabei kommt der kryogenen Speicherring CSR zum Einsatz, der vor kurzem am Max-Planck-Institut für Kernphysik in Betrieb gegangen ist. Bereits bei den derzeit durchgeführten Experimenten – wiederum an den negativen vieratomigen Kobaltclustern – ist zu beobachten, dass sich bei den geringen Temperaturen der Energieaustausch durch Wärmestrahlung verlangsamt. Die langen Speicherzeiten für Ionenstrahlen im CSR (bis in den Bereich von einer Stunde) erweisen sich daher als besonderer Vorteil für die Untersuchung von Molekülen und Clustern unter interstellaren Bedingungen.

Weitere Informationen
Die Ergebnisse zur Wärmestrahlung kleiner Cluster wurden veröffentlicht im Fachblatt Physical Review Letters
Phys. Rev. Lett.120, 253001
Originalartikel https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.253001
DOI: https://doi.org/10.1103/PhysRevLett.120.253001
Erweiterte Pressemitteilung: https://physik.uni-greifswald.de/ag-schweikhard/further-links/press-releases/

Ansprechpartner an der Universität Greifswald
Dr. Sebastian George
Institut für Physik, Universität Greifswald
Arbeitsgruppe „Atom- und Molekülphysik“
Felix-Hausdorff-Straße 6, 17489 Greifswald
Telefon +49 3834 420 4700
sebastian.george@uni-greifswald.de
https://physik.uni-greifswald.de/ag-schweikhard/group-members/george/

Prof. Dr. Lutz Schweikhard
Institut für Physik, Universität Greifswald
Arbeitsgruppe „Atom- und Molekülphysik“
Felix-Hausdorff-Straße 6, 17489 Greifswald
Telefon +49 3834 420 4700
lschweik@physik.uni-greifswald.de
https://physik.uni-greifswald.de/ag-schweikhard/
https://www.researchgate.net/profile/Lutz_Schweikhard

Ansprechpartner am Max-Planck-Institut für Kernphysik
Prof. Dr. Andreas Wolf
Max-Planck-Institut für Kernphysik
Abteilung "Gespeicherte und gekühlte Ionen“
Saupfercheckweg 1, 69117 Heidelberg
Telefon +49 6221 516 851
andreas.wolf@mpi-hd.mpg.de
https://www.mpi-hd.mpg.de/blaum/members/molecular-qd/wolf.de.html

Ansprechpartner an der Technischen Universität Kaiserslautern
Prof. Dr. Gereon Niedner-Schatteburg
Fachbereich Chemie and Forschungszentrum OPTIMAS,
Technische Universität Kaiserslautern (TUK)
Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern
Telefon +49 631 205 2536
gns@chemie.uni-kl.de
https://www.chemie.uni-kl.de/gns/

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

10.000-mal schnellere Berechnungen möglich

20.02.2020 | Physik Astronomie

Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien

20.02.2020 | Biowissenschaften Chemie

Krebsstammzellen nachverfolgen

20.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics