Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das VST wirft einen Blick auf das Leo-Triplett – und darüber hinaus

27.07.2011
Die hier gezeigte Aufnahme eines Dreiergespanns von hellen Galaxien im Sternbild Leo (der Löwe) verdanken wir dem neuen VLT Survey Telescope am Paranal-Observatorium der ESO und seiner Kamera OmegaCAM.

Die Astronomen sind allerdings weniger an diesem Triplett als an den vielen Objekten im Hintergrund des Bildes interessiert. Der Reichtum an solchen lichtschwachen Bilddetails zeigt deutlich die Leistungsfähigkeit von Teleskop und Kamera, die damit besonders geeignet sind, ferne Regionen des Universums zu studieren.


Das Leo-Triplett, aufgenommen mit dem VST
Bild: ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute

Das VLT Survey Telescope (VST, [1]) ist das neueste Teleskop am Paranal-Observatorium der ESO (eso1119): ein modernes 2,6-Meter-Teleskop, das mit der riesigen 268-Megapixel-Kamera OmegaCAM [2] ausgerüstet ist. VST steht für “VLT Survey Telescope“, zu deutsch „VLT-Durchmusterungs-Teleskop“, und der Name ist Programm: das VST hat die Aufgabe, den Himmel zu durchmustern. Es ist derzeit das weltweit größte Teleskop, das ausschließlich für Durchmusterungen im sichtbaren Licht eingesetzt wird. Die Großansicht des Leo-Tripletts demonstriert die herausragende Qualität der Aufnahmen von Teleskop und Kamera.

Das Leo-Triplett ist eine Gruppe von drei miteinander wechselwirkenden Galaxien, rund 35 Millionen Lichtjahre von der Erde entfernt. Die drei Gruppenmitglieder sind Spiralgalaxien wie unsere Milchstraße, auch wenn man das in der Aufnahme nicht bei allen dreien auf den ersten Blick erkennen kann. Wir sehen jede der Galaxien unter einem anderen Blickwinkel: NGC 3628, links im Bild, sehen wir direkt von der Seite, so dass die dichten Staubbänder entlang ihrer Scheibenebene deutlich zu erkennen sind. Die beiden Messierobjekte M 65 (oben rechts) und M 66 (unten rechts) liegen dagegen so geneigt, dass ihre Spiralarme deutlich sichtbar sind.

Mit den meisten großen Teleskopen kann man jeweils nur eine dieser Galaxien zur Zeit untersuchen (so wie beispielsweise in potw1026a und eso0338c). Das Gesichtsfeld des VST dagegen ist mehr als doppelt so groß wie die Vollmondscheibe, so dass alle drei Mitglieder der Galaxiengruppe auf das gleiche Bild passen. Zusätzlich werden auf der VST-Aufnahme unzählige lichtschwache, viel weiter entfernte Galaxien als schwache Fleckchen sichtbar.

Im Vordergrund des Bildes sind außerdem zahlreiche Sterne unterschiedlicher Helligkeit zu sehen, die zu unserer Milchstraße gehören. Eines der wissenschaftlichen Ziele des VST ist die Suche nach lichtschwachen Objekten in der Milchstraße, zum Beispiel nach Braunen Zwergen, nach Planeten, Neutronensternen und Schwarzen Löchern. Der galaktische Halo unserer Milchstraße, der die Außenbereiche oberhalb bzw. unterhalb der Scheibenebene umfasst, sollte zahlreiche solcher Objekte enthalten. Sie sind aber zumeist nicht hell genug, als dass sie sich selbst mit vergleichsweise großen Teleskopen nachweisen ließen. Mit dem VST halten die Astronomen Ausschau nach so genannten Mikrogravitationslinsen-Ereignissen [3], um diese Objekte indirekt zu erfassen – ein wichtiger Beitrag zur Erforschung des galaktischen Halos.

Ein Ziel solcher Untersuchungen ist es, die so genannte Dunkle Materie besser zu verstehen, von der man annimmt, dass sie den Hauptbestandteil des galaktischen Halos ausmacht. Weitere Informationen sowohl über die Dunkle Materie als auch über die geheimnisvolle Dunkle Energie sollen sich aus VST-Studien des fernen Universums ergeben. Hierfür wird das VST nach weit entfernten Galaxienhaufen und extrem rotverschobenen Quasaren suchen. Die Ergebnisse sollen den Astronomen dabei helfen, offene Fragen der Kosmologie zu beantworten.

Am anderen Ende der astronomischen Entfernungsskala finden sich in der hier gezeigten Aufnahme auch Objekte aus unserem Sonnensystem, die verglichen mit den fernen Galaxien quasi direkt vor unserer kosmischen Haustür liegen. Mindestens zehn Asteroiden haben in der Aufnahme Spuren hinterlassen: Wo sie sich durch das Bild bewegt haben, sind im Bild farbige Striche zu sehen [4]. Da das Sternbild Löwe entlang der so genannten Ekliptik liegt, also in der Ebene, auf der sich die Erde um die Sonne bewegt und in der sich in etwa auch die Umlaufbahnen der anderen Planeten und Kleinkörper im Sonnensystem befinden, zeigt die Aufnahme besonders viele Asteroiden.

Das Bild ist eine Kombination aus Einzelbelichtungen mit drei verschiedenen Filtern. Licht aus Aufnahmen, die mit einem Nahinfrarotfilter gewonnen wurden, ist in dieser Falschfarbenaufnahme rot eingefärbt, sichtbares Licht aus dem roten Bereich des Spektrums grün und Licht, das eigentlich grün ist, ist in pink zu sehen.

Endnoten

[1] Das VLT Survey Telescope ist ein Gemeinschaftsprojekt vom italienischen INAF - Osservatorio Astronomico di Capodimonte in Neapel und der ESO.

[2] OmegaCAM wurde von einem Konsortium von Instituten aus den Niederlanden, Deutschland und Italien unter maßgeblicher Beteiligung der ESO entworfen und gebaut. Deutsche Partner sind das Institut für Astrophysik der Universität Göttingen sowie die Universitätssternwarten München und Bonn.

[3] Mikrogravitationslinsen sind ein Phänomen, mit dessen Hilfe man das Vorhandensein eines lichtschwachen, aber massereichen Objektes durch die Wirkung nachweisen kann, den seine Schwerkraft auf das Licht eines dahinterliegenden Sterns ausübt. Voraussetzung ist, dass sich das unsichtbare Objekt zufällig nahe genug an der Sichtlinie zwischen dem Beobachter und dem fernen Stern entlang bewegt, denn nur unter dieser Voraussetzung wird das Licht des Sterns im Gravitationsfeld des Objektes hinreichend stark abgelenkt. Der Stern scheint dadurch von der Erde ausgesehen für eine kurze Weile messbar heller. Mikrogravitationslinsenereignisse treten zufällig auf und lassen sich nicht vorhersagen. Man findet sie daher am besten, indem man große Mengen an Sternen überwacht, um im Falle eines Falles die verräterischen Helligkeitsänderungen aufzeichnen zu können.

[4] Die Asteroidenspuren sind in diesem Bild entweder grün oder Paare aus roten und pinken Strichen. Grund dafür ist, dass die Einzelbilder, die für den grünen Kanal verwendet wurden, in einer anderen Nacht aufgenommen worden sind als die in rot und pink, die nacheinander in derselben Nacht entstanden sind.

Weitere Informationen

Die Europäische Südsternwarte ESO (European Southern Observatory) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch ihre 15 Mitgliedsländer: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Italien, die Niederlande, Österreich, Portugal, Spanien, Schweden, die Schweiz, die Tschechische Republik und das Vereinigte Königreich. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO betreibt drei weltweit einzigartige Beobachtungsstandorte in Nordchile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist der europäische Partner für den Aufbau des Antennenfelds ALMA, das größte astronomische Projekt überhaupt. Derzeit entwickelt die ESO ein Großteleskop der 40-Meter-Klasse für Beobachtungen im Bereich des sichtbaren und Infrarotlichts, das einmal das größte optische Teleskop der Welt werden wird, das European Extremely Large Telescope (E-ELT).

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsstaaten (und einigen weiteren Ländern) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie am Max-Planck-Institut für Astronomie in Heidelberg.

Kontaktinformationen

Carolin Liefke
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org
Douglas Pierce-Price
ESO, Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6759
E-Mail: dpiercep@eso.org

Carolin Liefke | ESO Science Outreach Network
Weitere Informationen:
http://www.eso.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics