Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorstoß ins Innere der Atome

23.02.2018

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend hoher Photonenenergie. Seit über 15 Jahren wird weltweit daran gearbeitet, genau dies zu erreichen. Physiker des Labors für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität München (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) in Garching haben es nun geschafft, diese Bedingungen zu erfüllen.


Nachdem zwei Photonen eines Attosekunden-Lichtblitzes (lila) ein Xenonatom getroffen haben, lösen sich mehrere Elektronen (kleine grüne Kugeln). Das Atom wird ionisiert. Diese Zwei - Photonen Interaktion wird durch neue Attosekunden-Technologie möglich.

Grafik: Christian Hackenberger

In ihrem Experiment konnten sie erstmals die nichtlineare Wechselwirkung eines Attosekundenpulses mit Elektronen aus einer inneren Atomschale beobachten. Dabei bedeutet nichtlinear, dass mehrere Photonen (in diesem Fall zwei) mit dem Atom interagieren. Möglich wurde dieser Fortschritt durch eine neu entwickelte Quelle für Attosekunden-Lichtblitze. Eine Attosekunde dauert ein Milliardstel einer milliardstel Sekunde.

Der Erkundung der ultraschnellen Elektronenbewegung, tief im Inneren von Atomen steht der Weg offen. Physiker des Labors für Attosekundenphysik der Ludwig-Maximilians-Universität München haben eine Technologie für die Erzeugung von Attosekunden-langen Lichtblitzen entwickelt, um Elektronen, die tief in Atomen verankert sind, in Echtzeit filmen zu können.

Das experimentelle Verfahren zum Filmen der Elektronenbewegung ist als „Pump-Probe-Verfahren“ bekannt. Dabei wird das Atom mit einem Photon aus einem ersten kurzen „Pump-Puls“, zu einer Bewegung angeregt und nach kurzer Verzögerung mit einem weiteren Photon aus einem „Probepuls“, fotografiert. Damit dies funktioniert, müssen die Photonen so dicht gepackt sein, dass das Atom zweimal hintereinander „getroffen“ werden kann.

Um Elektronen in inneren atomaren Schalen erreichen zu können, muss die Photonenenergie zudem im oberen Bereich des extremen, ultravioletten Lichtspektrums (XUV-Licht) liegen. Bis jetzt war es nicht gelungen, Attosekundenpulse in diesem Spektralbereich mit einer genügend großen Anzahl an Photonen zu erzeugen.

Die neue Technologie basiert auf der Hochskalierung herkömmlicher Quellen für Attosekunden-Lichtblitze. Der dazu notwendige Hochleistungslaser, entwickelt von einem Team um Prof. Laszlo Veisz, erzeugt infrarote Laserpulse mit nur einigen Wellenzyklen und rund 100 Mal mehr Photonen pro Puls als in herkömmlichen Systeme. Um einen Faktor 100 größer ist dementsprechend auch die Photonenzahlen der damit erzeugten Attosekundenpulsen.

In einem ersten Experiment ließen die Physiker die hochenergetischen Attosekundenpulse auf Xenon-Atome treffen. Gelangen die Photonen zu den inneren Elektronen der Xenon-Atome, schlagen sie Elektronen heraus und ionisieren die Atome. Mithilfe eines Ionenmikroskops zur Detektion der erzeugten Ionen konnten die Physiker erstmals eine Wechselwirkung von zwei Photonen aus einem Attosekundenpuls mit Elektronen aus inneren atomaren Schalen beobachten. Bisher war in der Attosekundenphysik nur die Interaktion eines einzelnen XUV-Photons mit Innerschalen-Elektronen möglich.

„Experimente, in denen man ein Atom mit zwei XUV-Attosekunden-Lichtblitzen interagieren lässt, werden oft als der heilige Graal der Attosekundenphysik bezeichnet. Die zwei XUV-Lichtblitze ermöglichen es, Elektronenbewegung im Inneren der Atome zu 'filmen', ohne diese zu beeinträchtigen“, erklärt Dr. Boris Bergues, der Leiter der Experimente. Bisher regte man Elektronen in inneren Atomschalen mit einem einzigen Photon aus einem XUV-Attosekunden-Lichtblitz an und „fotografierte“ anschließend das Geschehen mit einem längeren infraroten Lichtpuls. Dabei beeinflusste man allerdings die Elektronenbewegung beträchtlich.

„Die Elektronendynamik in den inneren Schalen ist besonders spannend, weil sie durch ein komplexes Zusammenspiel mehrerer wechselwirkender Elektronen gekennzeichnet ist“, erklärt Bergues. „Diese Dynamik wirft noch sehr viele Fragen auf, denen wir nun mit der neu geschaffenen Lasertechnik nachgehen können.“

Als nächstes planen die Wissenschaftler ein Experiment in dem sie den intensiven Attosekundenpuls jeweils in ein Pump- und ein Probepuls aufspalten, um damit die beobachtete Interaktion zeitlich aufzulösen.

Die nicht-lineare Optik, die nun in der Attosekundenphysik zum ersten Mal auch in inneren atomaren Schalen möglich wird, öffnet nun den Weg, die Dynamik von Elektronen tief im Inneren von Atomen in Echtzeit zu filmen und damit sichtbar zu machen, was bisher im Verborgenen blieb. Thorsten Naeser

Bildbeschreibung:

Nachdem zwei Photonen eines Attosekunden-Lichtblitzes (lila) ein Xenonatom getroffen haben, lösen sich mehrere Elektronen (kleine grüne Kugeln). Das Atom wird ionisiert. Diese Zwei - Photonen Interaktion wird durch neue Attosekunden-Technologie möglich.

Originalveröffentlichung:

B. Bergues, D. E. Rivas, M.Weidmann, A. A. Muschet, W. Helml, A. Guggenmoos, V. Pervak, U. Kleineberg, G. Marcus, R. Kienberger, D. Charalambidis, P. Tzallas, H. Schröder, F. Krausz, and L. Veisz
Table-Top Nonlinear Optics in the 100-eV Spectral Region
Optica, Vol. 5, Issue 3, pp. 237-242 (2018); doi.org/10.1364/OPTICA.5.000237

Kontakt:

Dr. Boris Bergues
Labor für Attosekundenphysik
Department für Physik, LMU München und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 32 905 -330
E-Mail: boris.bergues@mpq.mpg.de

Prof. Dr. Laszlo Veisz
Relativistic Attosecond Physics Laboratory
Department of Physics
Umea University
Linnaeus vag 24
SE-90187 Umea, Sweden
Telefon: +46 (0)90 786 66 62
E-Mail: laszlo.veisz@umu.se

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
12.12.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Beobachtung der Sternentstehung: Fertigung des Sechs-Meter-Teleskops von CCAT-prime hat begonnen
12.12.2018 | Universität zu Köln

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen

12.12.2018 | Physik Astronomie

Neue Testmethode verbessert Tuberkulose-Diagnose bei Nashörnern

12.12.2018 | Biowissenschaften Chemie

Alles unter Kontrolle: Fraunhofer LBF sorgt für mehr Zuverlässigkeit bei Medizingeräten

12.12.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics