Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Resonanzen und Blockaden oder: Wie wirkt der Kondo-Effekt?

07.10.2016

Physiker der Universität Regensburg bringen neue Erkenntnisse zum Kondo-Effekt hervor

Die Regensburger Physiker um Prof. Dr. Milena Grifoni beschäftigten sich ein weiteres Mal mit der Wirkweise des Kondo-Effektes. Sie fanden heraus, dass der vor 80 Jahren entdeckte Kondo-Effekt unter bestimmten Bedingungen zwei gänzlich verschiedene Wirkungen hervorrufen kann: Resonanzen und Blockaden.


Die negativ geladenen Elektronen stoßen sich gegenseitig ab, eines blockiert die Mitte. Durch den Kondo-Effekt bildet sich eine Elektronenwolke aus und der Strom kann wieder fließen.

Prof. Dr. Milena Grifoni

Das Forschungsergebnis zeigt, dass sich in wissenschaftlichen Entdeckungen vergangener Jahre durchaus noch Geheimnisse verbergen können, die darauf warten, in der Gegenwart oder Zukunft weiterentwickelt zu werden.

Eine der grundlegendsten Fragen in der Physik ist das Verhalten von Materialien bei sehr niedrigen Temperaturen. Bereits 1934 wurde ein neuer Effekt in bestimmten Metallen entdeckt, bei dem unterhalb einer kritischen Temperatur der Widerstand ansteigt, anstatt, wie man vermuten würde, zu stagnieren. Der Grund dafür wurde erst 32 Jahre später von dem japanischen Physiker Jun Kondo gefunden.

Der nach ihm benannte Kondo-Effekt beruht auf Defekten in diesen Metallen, an denen Elektronen streuen können, ähnlich wie Billardkugeln auf einem unebenen Billardtisch. Der Effekt basiert auf der Eigenrotation der Elektronen, dem sogenannten Spin. Dieser kann wegen der Quantenmechanik nur zwei Zustände annehmen, im Englischen oft "up" und "down" genannt.

Wenn die Störstelle einen Spin besitzt, führt dieser zu Prozessen, in denen ein ankommendes Elektron gestreut wird und dabei seinen Spin mit dem der Störstelle austauscht, sogenannte Spin-flip-Prozesse. Kondo hat festgestellt, dass die Gesamtheit vieler Prozesse eine anziehende Wirkung entfaltet und sich eine Wolke aus Elektronen um die Störstelle bildet. Da nun viele Elektronen in diesen Wolken gefangen werden, erhöht sich der Widerstand wieder.

Experimentelle Physiker aus Frankreich haben diesen Effekt in sogenannten Kohlenstoffnanoröhren gemessen. Diese Röhrchen bestehen nur aus Kohlenstoff und sind nur wenige Nanometer dick, können aber sehr lang werden. Die Wissenschaftler haben diese Kohlenstoffnanoröhre zwischen zwei Kontakte gebracht. Durch die negative Ladung der Elektronen und die damit verbundene Abstoßung lässt sich auf diese Weise ein einzelnes Elektron darin fangen, es wirkt dabei wie eine einzige magnetische Störstelle.

Der entscheidende Unterschied zu Metallen ist, dass der Weg für Elektronen vorerst durch das gefangene Elektron blockiert ist. Durch geschickte Einstellung der Experimentparameter lässt sich der Kondo-Effekt herbeiführen und die Kondo-Wolke bildet sich. Sie wird so groß, dass sie beide Kontakte mit einschließt und dadurch Elektronen passieren können.

Im Gegensatz zu Metallen wird der Widerstand dadurch kleiner. Zusätzlich zum Spin gibt es bei den Kohlenstoff Nanoröhren einen weiteren Freiheitsgrad. Die Elektronen können sich beim Überqueren der Röhre auf der Oberfläche im Uhrzeigersinn oder im Gegenuhrzeigersinn schrauben. Jedes Elektron kann also einen von vier verschiedenen Zuständen annehmen, die Kombination aus Spin und Bahndrehimpuls.Das Experiment hat gezeigt, dass nur zwei dieser Zustände wirklich eine Minderung des Widerstandes erzeugen, bei den anderen beiden passiert hingegen nichts.

Das Team um Prof. Dr. Milena Grifoni, Lehrstuhl für Theoretische Physik an der Universität Regensburg, hat jetzt die Begründung für dieses Phänomen gefunden. Die Erklärung ist ähnlich zum traditionellen Kondo-Effekt, bei dem Spin-flip-Prozesse die Resonanz bestimmen. Man kann durch geschickte Kombination aus den vier Zuständen vier Eigenzustände bestimmen und ihnen einen Pseudospin zuweisen.

Dieser verhält sich genau wie der richtige Spin, ist aber ein komplexes, theoretisches Konstrukt. Die Kondo-Resonanz und -Wolke bilden sich jedoch nur bei Prozessen aus, die den Pseudospin flippen, bei den anderen passiert nichts. Das Experiment in Frankreich und die theoretische Erklärung der Regensburger Physiker haben gezeigt, dass der Kondo-Effekt neben den Kondo-Resonanzen eben auch genau das Gegenteil, die Blockade dieser, bewirken kann und dass er selbst nach 80 Jahren seit seiner Entdeckung immer noch Geheimnisse birgt.

Das Forschungsergebnis wurde in der Fachzeitschrift „Nature Communications“ publiziert
(DOI: 10.1038/ncomms12442).

Ansprechpartner für Medienvertreter:
Prof. Dr. Milena Grifoni
Lehrstuhl für Theoretische Physik
Universität Regensburg
Tel. 0941 943-2035
Milena.Grifoni@physik.uni-regensburg.de

Petra Riedl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics