Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

25.02.2020

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des Exzellenzclusters PRISMA⁺ der Johannes Gutenberg-Universität Mainz (JGU) federführend beteiligt sind, zeigt nun: Das Rätsel der Neutrino-Massenordnung könnte bereits in den nächsten Jahren gelöst sein.


JUNO-Detektor (links), IceCube Detektor (rechts)

JUNO Collaboration/IceCube Collaboration

Denn: Mit der kombinierten Leistungsfähigkeit zweier neuer Neutrino-Experimente am Horizont – dem Upgrade des IceCube Experiments am Südpol und dem Jiangmen Underground Neutrino Observatory (JUNO) in China – werden die Physiker bald Zugang zu sehr viel empfindlicheren und sich ergänzenden Messungen der Neutrino-Massenordnung haben.

Neutrinos sind die Chamäleons unter den Elementarteilchen

Neutrinos werden von natürlichen Quellen – etwa im Sonneninneren und anderen astronomischen Objekten – aber auch in Kernkraftwerken in riesigen Mengen erzeugt. Normale Materie – einschließlich unseren Körper – durchdringen sie jedoch völlig ungehindert.

Das macht den Nachweis dieser „Geisterteilchen“ extrem aufwendig und erfordert gewaltige Detektoren, um wenigstens ein paar der seltenen Reaktionen nachzuweisen.

Neutrinos kommen in drei unterschiedlichen Arten vor – als Elektron-, Myon- und Tau-Neutrinos. Sie können sich ineinander umwandeln; ein Phänomen, das die Forscher als Neutrinooszillationen bezeichnen. Aus dem beobachteten Oszillationsmuster lassen sich auch Rückschlüsse auf die Masse der Teilchen ziehen.

Die Frage, die die Physiker seit Jahren umtreibt, ist: Welches der drei Neutrinos ist das leichteste, welches das schwerste? Prof. Dr. Michael Wurm, Physiker am Exzellenzcluster PRISMA⁺ und am Institut für Physik der JGU, ist maßgeblich am Aufbau des JUNO Experiments in China beteiligt.

Er sagt: „In der Beantwortung dieser Frage sehen wir einen wichtigen Schritt, um langfristig Informationen über die Verletzung der Materie-Antimaterie-Symmetrie im Neutrinosektor gewinnen zu können. Deshalb versprechen wir uns davon schlussendlich Antworten auf die Frage, weshalb sich Materie und Antimaterie nach dem Urknall nicht vollständig gegenseitig vernichtet haben.“

Weltweite Zusammenarbeit zahlt sich aus

Beide Groß-Experimente nutzen sehr unterschiedliche und komplementäre Wege, um das Rätsel der Neutrino-Massenordnung zu lösen. „Da liegt es nahe, die erwarteten Ergebnisse beider Experimente zu kombinieren“, erläutert Prof. Dr. Sebastian Böser, der ebenfalls am Exzellenzcluster PRISMA⁺ und am Institut für Physik der JGU an Neutrinos forscht und maßgeblich am IceCube Experiment beteiligt ist.

Gesagt, getan: In der aktuellen Ausgabe der Physical Reviews D beschreiben Forscher der IceCube und der JUNO Kollaboration eine kombinierte Analyse ihrer jeweiligen Experimente. Dazu gingen die Autoren zunächst davon aus, dass jedes Experiment eine bestimmte Zeit gelaufen war und simulierten dann die vorhergesagten experimentellen Ergebnisse.

Diese Ergebnisse variieren je nachdem, ob die Neutrino-Massen einer normalen oder umgekehrten (invertierten) Ordnung folgen. Als nächstes führten die Physiker einen statistischen Test durch, in dem sie die simulierten Ergebnisse beider Experimente einer gemeinsamen Analyse unterzogen: Diese verriet ihnen die Empfindlichkeit dafür, dass beide Experimente kombiniert die korrekte Ordnung vorhersagen beziehungsweise die falsche Ordnung ausschließen können.

Da die Ergebnisse von JUNO und IceCube sehr spezifisch von der tatsächlichen Neutrino-Massenordnung abhängen, hatte ihr kombinierter Test eine sehr viel stärkere Unterscheidungskraft als jedes der Einzelexperimente: In Kombination können die Experimente so die falsche Neutrino-Massenordnung innerhalb von drei bis sieben Jahren Messzeit definitiv ausschließen.

„Das Ganze ist in diesem Fall mehr als die Summe seiner Teile“, lautet das Fazit von Sebastian Böser. „Es unterstreicht eindrucksvoll die Bedeutung komplementärer experimenteller Ansätze zur Lösung der verbleibenden Rätsel der Neutrinos.“ „Weder das IceCube Upgrade noch JUNO können das alleine erreichen – und auch keines der anderen Experimente, die es derzeit gibt“, ergänzt Michael Wurm. „Darüber hinaus ist es ein schönes Beispiel für die Zusammenarbeit der Neutrinophysiker hier in Mainz.“

Über IceCube und seine Erweiterung:

IceCube ist der größte Teilchendetektor der Welt. Er wurde im Dezember 2010 fertiggestellt und sammelt seitdem Daten über Neutrinos aus dem Weltall. Er besteht aus einem Kubikkilometer Eis und liegt direkt bei der Amundsen-Scott-Station am geografischen Südpol. An 86 Kabeltrossen sind jeweils 60 Glaskugeln angebracht, die in Tiefen zwischen 1,45 und 2,45 Kilometer reichen. Diese Kugeln umschließen hochempfindliche Lichtsensoren, die das bläuliche Tscherenkow-Leuchten auffangen, das bei Neutrino-Reaktionen entsteht. Zu den bisher 5.160 Sensoren kommen mit dem Upgrade weitere 700 neue Sensoren hinzu, die in sehr engem Abstand an sieben Kabeltrossen befestigt sind. Sie werden unter dem Zentrum des jetzigen Detektors etwa 1,6 Kilometer tief installiert.

Über JUNO:

Der JUNO-Detektor (Jiangmen Underground Neutrino Observatory) wird aktuell in einem eigens geschaffenen Untergrundlabor aufgebaut, das in etwa 50 Kilometer Abstand zu zwei Reaktorkomplexen an der südchinesischen Küste liegt. Die von den Reaktoren ausgesandten Neutrinos werden anhand kleiner Lichtblitze im Szintillatortarget des Detektors nachgewiesen. 20.000 Tonnen einer mineralölähnlichen Flüssigkeit befinden sich gut abgeschirmt von äußerer Strahlung in einer 35 Meter durchmessenden Plexiglassphäre im Zentrum des Detektors, dessen Oberfläche dicht mit Lichtsensoren bestückt ist.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Michael Wurm
Experimental Particle and Astroparticle Physics (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23928
E-Mail: wurmm@uni-mainz.de

Prof. Dr. Sebastian Böser
Experimental Particle and Astroparticle Physics (ETAP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23865
E-Mail: sboeser@uni-mainz.de

Originalpublikation:

M. G. Aartsen et al. (IceCube-Gen2 Collaboration, JUNO Collaboration Members), Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU, Physical Review D 101: 032006, 21. Februar 2020
DOI: 10.1103/PhysRevD.101.032006
https://link.aps.org/doi/10.1103/PhysRevD.101.032006

Weitere Informationen:

https://www.uni-mainz.de/presse/aktuell/10965_DEU_HTML.php

Dr. Renée Dillinger-Reiter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zweifel an grundsätzlichen Annahmen zum Universum
08.04.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Langlebigere Satelliten, weniger Weltraumschrott
08.04.2020 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics