Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019

Das Ferdinand-Braun-Institut präsentiert auf dem MikroSystemTechnik-Kongress weltraumtaugliche Diodenlaser-Module, die auf der einzigartigen Mikrointegrations-Technologie des Instituts basieren. Weitere hybrid-integrierte Komponenten zeigt es aus Mikrowellentechnik und Terahertz-Elektronik.

Seine Entwicklungen stellt das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) auf dem MikroSystemTechnik-Kongress vor. Vom 28. bis 30. Oktober ist das FBH am Gemeinschaftsstand der Forschungsfabrik Mikroelektronik Deutschland (FMD) im Estrel Berlin vertreten.


Einzigartige Mikrointegrationstechnologie: Robustes Diodenlasermodul für Weltraumanwendungen bei der Präzisionsmontage.

©FBH/schurian.com

Kompakte und stabile Lasermodule für quantenoptische Präzisionsexperimente

Das FBH besitzt umfassende Erfahrung bei der Entwicklung und Fertigung von kompakten, hybrid-integrierten Diodenlasermodulen. Ihr Design wird exakt auf die jeweilige Anwendung zugeschnitten. Die Technologie ist so in vielfältigen Bereichen einsetzbar, von der Sensorik über die Medizintechnik bis hin zu Weltraumanwendungen.

Am Messestand zeigt das Institut Diodenlaser-Module, die bereits erfolgreich in verschiedenen Experimenten unter Schwerelosigkeit eingesetzt wurden. Die Module bestehen aus Laserdioden, die am FBH entwickelt und hergestellt und gemeinsam mit Optiken und weiteren passiven Elementen mit höchster Stabilität und Präzision – teils in Bereichen von unter 100 nm – aufgebaut werden.

Dank der einzigartigen Mikrointegrationstechnologie des FBH sind die Module extrem robust und ideal für den Einsatz unter anspruchsvollen Bedingungen im Weltraum geeignet. Sie zeichnen sich zudem durch geringe Abmessungen von nur 130 x 80 x 25 mm³, eine geringe Masse (750 g) sowie exzellente Leistungsparameter aus: Ausgangsleistungen > 500 mW bei zugleich schmaler intrinsischer Linienbreite < 1 kHz werden erreicht.

Entwicklungen aus der Mikrowellentechnik und Terahertz-Elektronik

Der Terahertz (THz)-Bereich bietet eine gute räumliche Auflösung und kann die meisten nicht-metallischen Materialien durchdringen. Damit eignet er sich für industrielle und sicherheitsrelevante Anwendungen.

Das FBH zeigt THz-Detektoren, die sich auch zu Arrays anordnen lassen. Die III/V-basierten THz-Detektoren bieten beste Werte für die äquivalente Rauschleistung NEP < 25 pW/sqrt(Hz) mit höchster Empfindlichkeit von > 100 mA/W bei 500 GHz – und übertreffen damit die besten THz-Detektoren in CMOS-Technologie.

Für die mobile Kommunikation der Zukunft entwickelt das Institut digitale Leistungsverstärker mit effizienten Verstärker-Chips, die auf dem 0,25 µm GaN-HEMT-Prozess des FBH basieren. Mit ihnen hat das Institut die erste volldigitale Transmitterkette realisiert, die breitbandige Signale mit höchster Effizienz und Linearität (47% bei > 52 dB ACLR) erfolgreich überträgt. Der kompakte digitale Transmitter eignet sich besonders für Mehrantennensysteme, bei denen er auf der Rückseite der Antenne montiert wird.

Das FBH stellt zudem Konzepte zum Envelope Tracking (ET) vor, eine bekannte Technik zur Effizienzsteigerung von Solid-State Power Amplifiern. Damit lässt sich die Versorgungsspannung des HF-Leistungsverstärkers entsprechend der momentanen Hüllkurve des zu verstärkenden Signals modulieren.

Zusammen mit der Europäischen Weltraumagentur ESA hat das FBH einen neuartigen ET-Demonstrator für die Kommunikation im Weltraum bei 1,62 GHz entwickelt. Der Verstärker hat eine Spitzenausgangsleistung von mehr als 90 W bei einer Modulationsbandbreite von 40 MHz. Mit einem 8,6 PAPR (Peak-to-Average Power Ratio)-Signal liegt der Gesamtwirkungsgrad bei 40%.

Das FBH hat das Konzept der Versorgungsspannungs-Modulation auch auf Millimeterwellen-Verstärker übertragen. Das entsprechende Modul besteht aus zwei identischen MMICs, die in Reihe geschaltet sind. Diese bestehen jeweils aus einem einstufigen Verstärker mit integriertem zweistufigen Spannungsschalter, der die Versorgungsspannung des Verstärkers in diskreten Stufen moduliert. Das Modul arbeitet im Bereich von 20 - 26 GHz mit 14 dB Verstärkung und mehr als 2 W/mm bei 20 V Versorgungsspannung.

Kontakt Öffentlichkeitsarbeit:

Petra Immerz, M.A.
Communications Manager
Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin

Tel. 030.6392-2626
Fax 030.6392-2602
E-Mail petra.immerz@fbh-berlin.de
Web www.fbh-berlin.de

Weitere Informationen:

https://www.fbh-berlin.de/presse/pressemitteilungen/detail/volle-wertschoepfungs...

Dipl.-Geogr. Anja Wirsing | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Etwas lauert im Herzen des Quasars 3C 279
07.04.2020 | Max-Planck-Institut für Radioastronomie

nachricht Quantenphysik: Dispersion der „Bethe Strings” experimentell beobachtet
07.04.2020 | Universität zu Köln

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zacken in der Viruskrone

07.04.2020 | Biowissenschaften Chemie

Auf der Suche nach neuen Antibiotika

07.04.2020 | Biowissenschaften Chemie

Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

07.04.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics