Dem Verursacher der Schlafkrankheit auf der Spur

Ein interdisziplinäres Forscherteam mit maßgeblicher Beteiligung der TU Berlin hat in dem führenden internationalen Physikjournal „Physical Review Letters“ eine Arbeit veröffentlicht, die zum Verständnis der Fortbewegungsstrategie des afrikanischen Trypanosoms beiträgt. Das ist ein Parasit, der in Afrika die tödliche Schlafkrankheit beim Menschen bewirkt und auch in Rindern zu schwerwiegenden Erkrankungen führt.

Mikroorganismen wie zum Beispiel Spermien haben ausgeklügelte Mechanismen für ihre Fortbewegung in wässriger Umgebung entwickelt, die entscheidend für ihre Funktion sind. Spermien verwenden die Schlagbewegung einer fadenförmigen Geißel zur Fortbewegung. Beim Trypanosom ist die Geißel am spindelförmigen Zellkörper angeheftet, der durch die Schlagbewegung stark deformiert wird.

Sravanti Uppaluri, Doktorandin am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen, hat die Bewegung der Trypanosomen unter dem Mikroskop verfolgt und aus den aufgenommenen Filmen Schwimmpfade extrahiert. Diese wurden dann von Dr. Vasily Zaburdaev, der in der Arbeitsgruppe „Statistische Physik weicher Materie und biologischer Systeme“ unter Leitung von TU-Professor Dr. Holger Stark forscht, mit statistischen Methoden analysiert. Solche Methoden sind notwendig, um aus verrauschtem Datenmaterial Erkenntnisse zu extrahieren. Während allerdings Mikrometer große Teilchen aufgrund ihrer wässrigen Umgebung eine ungeordnete, sogenannte Brownsche Bewegung ausführen, liegt bei den Trypanosomen der Grund für das Rauschen in Mechanismen innerhalb der Zelle und ist stark von der Schwimmgeschwindigkeit des Trypanosoms abhängig, wie Dr. Vasily Zaburdaev zeigen konnte, der zur Zeit an der Harvard-Universität arbeitet. Aus der statistischen Analyse ergab sich, dass die schlagende Geißel eine schnelle irreguläre Hin- und Herbewegung des Zellkörpers bewirkt mit einer mittleren Dauer von einer Zwanzigstel Sekunde. Dies führt zu einer Zickzack-Form des Schwimmpfades. Trotz dieser irregulären Bewegung bei sehr kleinen Zeiten gelingt es dem Trypanosom während circa zehn Sekunden im Mittel geradeaus zu schwimmen. Das haben die Untersuchungen gezeigt.

Die Forschungen tragen zum tieferen Verständnis der Fortbewegung von Trypanosomen bei. Sie zeigen beispielhaft, wie durch statistische Analyse, einem modernen Werkzeug der Theoretischen Physik, Systeme der belebten Natur und insbesondere die Beweglichkeit von Mikroorganismen besser verstanden werden. Vor allem helfen sie aber auch beim Design von künstlichen Mikroschwimmern, die gerade in den letzten Jahren den Status der Vision verlassen haben und sehr real geworden sind.

Online-Veröffentlichung im „Physical Review Letters“:
http://prl.aps.org/abstract/PRL/v106/i20/e208103
Weitere Informationen erteilt Ihnen gern: Prof. Dr. Holger Stark, Arbeits-gruppe „Statistische Physik weicher Materie und biologischer Systeme“, Institut für Theoretische Physik der TU Berlin, Hardenbergstr. 36, 10623 Berlin, Tel.: 030/314-29623, Fax: -21130, E-Mail: holger.stark@tu-berlin.de

Media Contact

Stefanie Terp idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer