Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verständnis mikroskopischer Defekte ermöglicht gezielte Optimierung von Hochtemperatur-Supraleitern

29.06.2010
Forscher aus Augsburg, Gainesville und Kopenhagen berichten in Nature Physics über die Identifizierung der Hauptursache reduzierten Stromtransports.

Physiker aus Augsburg, Gainesville und Kopenhagen berichten in der jüngsten Ausgabe der international renommierten Fachzeitschrift "Nature Physics" wie es ihnen gelungen ist, die elektrische Ladung, die sich an den Grenzflächen zwischen Kristallkörnern sammelt, als Hauptursache für den reduzierten Stromtransport in Supraleitern zu identifizieren und damit die Voraussetzung für eine gezielte Optimierung des Stromtransports in den Kupferoxid-Supraleitern sowie für die Erweiterung der Möglichkeiten ihres praktischen Einsatzes zu schaffen.

In einer Zeit, in der die drohende globale Energiekrise ins Zentrum der politischen und wissenschaftlichen Diskussion rückt und alternative Verfahren der Energiegewinnung ebenso wie neue Möglichkeiten der Energieeinsparung gesucht und diskutiert werden, gewinnt der verlustfreie Stromtransport durch supraleitende Kabel immer mehr an Bedeutung. Obwohl das Phänomen der Supraleitung, dem ein komplizierter Quantenzustand zugrunde liegt, schon seit nahezu einem Jahrhundert bekannt ist, kamen Supraleiter lange Zeit für den Energietransport, sowie für den Bau von Motoren und Generatoren kaum zum Einsatz, da sie nur bei sehr tiefen Temperaturen funktionsfähig sind – Temperaturen, die nur mit enormem Aufwand erreicht werden können.

Mikroskopische Defekte mit besonders negativen Auswirkungen

Erst vor 25 Jahren – mit der Entdeckung der supraleitenden Eigenschaften einiger Kupferoxid-Verbindungen, für deren Kühlung flüssige Luft ausreichend ist – gelangte ein praktischer Einsatz der Supraleitung für die Energieversorgung in Reichweite. Jedoch legte die Natur auch hier wieder einen Stolperstein auf den Erfolgsweg der Supraleitung: Die in fast allen Materialien vorhandenen mikroskopischen Defekte, die sich durch das Aufeinandertreffen einzelner, gegeneinander verdrehter Materialkörner ausbilden, wirken sich in diesen neuen Supraleitern ganz besonders negativ auf den Stromtransport aus.

Dieser Umstand wurde experimentell umfassend untersucht und verschiedene Verfahren zur Verbesserung der physikalischen Eigenschaften dieser Materialien konnten erfolgreich entwickelt werden, wobei hier Pionierarbeit von Forschern der Universität Augsburg geleistet wurde. Aber ein theoretisches Verständnis dieses Problems war bislang nicht vorhanden.

Durch Modellierung und Simulation theoretisch verständlich gemacht

Nun ist es einer internationalen Gruppe von Physikern an der Universität Augsburg, der Universität von Florida in Gainesville und dem Niels-Bohr Institut in Kopenhagen gelungen, die mikroskopischen Defekte in diesen Materialien erfolgreich theoretisch zu modellieren und den supraleitenden Stromtransport zu simulieren. Dabei wurde die sich an den Grenzflächen zwischen zwei Kristallkörnern sammelnde elektrische Ladung als Hauptursache für den reduzierten Stromtransport identifiziert. Dieses theoretische Verständnis erlaubt es nun, nach gezielten Verfahren zur Verbesserung des Stromtransports in den Kupferoxid-Supraleitern zu suchen und damit letztlich die Möglichkeiten ihres praktischen Einsatzes zu erweitern.

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Augsburger Sonderforschungsbereichs SFB484 und des neu geschaffenen Augsburg-Münchner Transregios TRR80, sowie dem amerikanischen Department of Energy finanziell unterstützt und in der jüngsten Ausgabe der international renommierten Fachzeitschrift Nature Physics vorgestellt (siehe http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys1687.html).

S. Graser , P. J. Hirschfeld, T. Kopp, R. Gutser, B. M. Andersen & J. Mannhart: How grain boundaries limit supercurrents in high-temperature superconductors, in: Nature Physics, published online: 27. June 2010, doi: 10.1038/nphys1687

Ansprechpartner an der Universität Augsburg:

• Dr. Siegfried Graser
siegfried.graser@physik.uni-augsburg.de
• Prof. Dr. Thilo Kopp
thilo.kopp@physik.uni-augsburg.de
• Prof. Dr. Jochen Mannhardt
jochen.mannhart@physik.uni-augsburg.de
Lehrstuhl für Experimentalphysik VI/EKM
Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3651

Klaus P. Prem | idw
Weitere Informationen:
http://www.physik.uni-augsburg.de/exp6
http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys1687.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Mit Diamant und Laser kleinste Magnetfelder im Gehirn messen // Quantensensorik am Fraunhofer IAF
25.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Mögliche Heimatsterne für das interstellare Objekt 'Oumuamua'
25.09.2018 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weichenstellung für Axonverzweigungen

Unser Gehirn ist ein komplexes Netzwerk aus unzähligen verknüpften Nervenzellen. Diese haben lange verzweigte Fortsätze, sogenannte Axone, um die Anzahl der möglichen Interaktionen zu erhöhen. In Zusammenarbeit mit Wissenschaftlern aus Portugal und Frankreich untersuchten Forscher am Max-Planck-Institut für Biochemie (MPIB) die Prozesse, die zu solch Zellverzweigungen führen. Sie fanden einen neuartigen Mechanismus, der die Verzweigung von Mikrotubuli, einem mechanischen Stabilisierungssystems in den Zellen, und somit der Axone auslöst. Wie die Forscher in Nature Cell Biology berichten, spielt die neu entdeckte Mikrotubuli-Dynamik eine Schlüsselrolle bei der neuronalen Entwicklung.

Von den Zweigen eines Baums bis hin zur Eisenbahnweiche – unsere Umwelt ist voller starrer verzweigter Objekte. Sie sind so allgegenwärtig in unserem Leben,...

Im Focus: Working the switches for axon branching

Our brain is a complex network with innumerable connections between cells. Neuronal cells have long thin extensions, so-called axons, which are branched to increase the number of interactions. Researchers at the Max Planck Institute of Biochemistry (MPIB) have collaborated with researchers from Portugal and France to study cellular branching processes. They demonstrated a novel mechanism that induces branching of microtubules, an intracellular support system. The newly discovered dynamics of microtubules has a key role in neuronal development. The results were recently published in the journal Nature Cell Biology.

From the twigs of trees to railroad switches – our environment teems with rigid branched objects. These objects are so omnipresent in our lives, we barely...

Im Focus: Kupfer-Aluminium-Superatom

Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms. Das hetero-metallische Superatom, das Chemikerinnen und Chemiker der Technischen Universität München (TUM) hergestellt haben, schafft die Voraussetzung für die Entwicklung neuer, kostengünstiger Katalysatoren.

Chemie kann teuer sein. Zum Reinigen von Abgasen beispielsweise benutzt man Platin. Das Edelmetall dient als Katalysator, der chemische Reaktionen...

Im Focus: Hygiene im Handumdrehen – mit neuem Netzwerk „CleanHand“

Das Fraunhofer FEP beschäftigt sich seit Jahrzehnten mit der Entwicklung von Prozessen und Anlagen zur Reinigung, Sterilisation und Oberflächenmodifizierung. Zur Bündelung der Kompetenzen vieler Partner wurde im Mai 2018 das Netzwerk „CleanHand“ zur Entwicklung von Systemen und Technologien für saubere Oberflächen, Materialien und Gegenstände ins Leben gerufen. Als Partner von „CleanHand“ präsentiert das Fraunhofer FEP im Rahmen der Messe parts2clean, vom 23.-25. Oktober 2018, in Stuttgart, am Stand der Fraunhofer-Allianz Reinigungstechnik (Halle 5, Stand C31), das Netzwerk sowie aktuelle Forschungsschwerpunkte des Institutes im Bereich Hygiene und Reinigung.

Besonders um die Hauptreisezeiten gehen vermehrt Testberichte und Studien über die Reinheit von europäischen Raststätten, Hotelbetten und Freibädern durch die...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fachkonferenz "Automatisiertes und autonomes Fahren"

25.09.2018 | Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Intelligentes Order Management in einer einzigen Software

26.09.2018 | Informationstechnologie

Weichenstellung für Axonverzweigungen

26.09.2018 | Biowissenschaften Chemie

Biosolarzelle produziert Wasserstoff

26.09.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics