Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschränkte Atome leuchten im Gleichklang

15.05.2018

Einem Team um Experimentalphysiker Rainer Blatt ist es gelungen, die Quantenverschränkung zweier räumlich getrennter Atome durch die Beobachtung ihrer Lichtemission zu charakterisieren. Dieses grundlegende Experiment könnte zur Entwicklung hochempfindlicher optischer Gradiometer zur präzisen Bestimmung des Schwerefelds oder des Erdmagnetfelds führen.

Das Zeitalter der Quantentechnologie ist längst eingeläutet. In der jahrzehntelangen Erforschung der Quantenwelt wurden Methoden entwickelt, die es heute möglich machen, Quanteneigenschaften gezielt für technische Anwendungen auszunutzen.


Über die Interferenz von Lichtteilchen, die von zwei Atomen ausgesendet werden, lässt sich deren Verschränkung charakterisieren.

IQOQI Innsbruck/Harald Ritsch

Das Team um den Innsbrucker Quantencomputer-Pionier Rainer Blatt kontrolliert in seinen Experimenten in Ionenfallen einzelne Atome sehr exakt. Die gezielte Verschränkung dieser Quantenteilchen eröffnet nicht nur die Möglichkeit zum Bau eines Quantencomputers, sondern schafft auch die Grundlage für die Messung von physikalischen Eigenschaften in bisher ungekannter Präzision.

Den Physikern ist es nun erstmals gelungen, die Interferenz von einzelnen Lichtteilchen, die von zwei verschränkten, aber räumlich getrennten Atomen ausgesendet werden, zu demonstrieren.

Sehr empfindliche Messungen

„Wir können heute die Position und Verschränkung von Teilchen sehr exakt kontrollieren und bei Bedarf einzelne Photonen erzeugen“, erzählt Gabriel Araneda aus dem Team von Rainer Blatt am Institut für Experimentalphysik der Universität Innsbruck.

„Zusammen ermöglicht uns das, die Auswirkungen von Verschränkung auf die kollektive Wechselwirkung von Atomen und Licht zu untersuchen.“ Die Physiker der Universität Innsbruck verglichen die Überlagerung von Licht, das einmal von verschränkten und ein andermal von nicht verschränkten Barium-Atomen ausgesendet wurde. Die Messungen zeigten, dass diese qualitativ unterschiedlich sind. Tatsächlich entspricht der gemessene Unterschied der Interferenzstreifen direkt dem Betrag der Verschränkung der Atome.

„Auf diese Weise können wir die Verschränkung rein optisch charakterisieren“, unterstreicht Gabriel Araneda die Bedeutung des Experiments. Die Physiker konnten aber auch demonstrieren, dass das Interferenzsignal gegenüber Umwelteinflüssen am Standort der Atome sehr empfindlich ist. „Wir haben diese Empfindlichkeit ausgenutzt, um mit Hilfe des beobachteten Interferenzsignals die Magnetfeldgradienten zu ermitteln“, sagt Araneda.

Die Technik könnte so die Grundlage für den Bau von hochempfindlichen optischen Gradiometer bilden. Da der gemessene Effekt vom Abstand der Teilchen unabhängig ist, könnten die Messungen einen präzisen Vergleich der Feldstärken zum Beispiel des Erdmagnetfelds oder der Gravitation an verschiedenen Ort ermöglichen.

Veröffentlicht wurde die Arbeit in der Fachzeitschrift Physical Review Letters. Die Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF, der Europäischen Union und der Tiroler Industrie finanziell unterstützt.

Publikation: Interference of single photons emitted by entangled atoms in free space. Gabriel Araneda, Daniel B. Higginbottom, Lukáš Slodička, Yves Colombe, Rainer Blatt. Phys. Rev. Lett. 120, 193603 DOI: 10.1103/PhysRevLett.120.193603

Rückfragehinweis:

Gabriel Araneda
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 52472
E-Mail: Gabriel.Araneda-Machuca@uibk.ac.at
Web: https://quantumoptics.at

Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at
Web: https://www.uibk.ac.at

Weitere Informationen:

https://doi.org/10.1103/PhysRevLett.120.193603 - Interference of single photons emitted by entangled atoms in free space. Gabriel Araneda, Daniel B. Higginbottom, Lukáš Slodička, Yves Colombe, Rainer Blatt. Phys. Rev. Lett. 120, 193603
https://quantumoptics.at/ - Quantum Optics and Spectroscopy group

Dr. Christian Flatz | Universität Innsbruck

Weitere Berichte zu: Atome Gleichklang Lichtteilchen Quantencomputers single photons

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics