Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verkehrte Welt auf der Insel der Inversion: Erster Nachweis eines sphärischen Magnesium-32-Kerns

01.02.2011
Elemente, die schwerer sind als Eisen, bilden sich nur in gewaltigen Sternexplosionen, sogenannten Supernovae. Durch Kernreaktionen entstehen hierbei jede Menge hochangeregte kurzlebige Atomkerne, inmitten derer die Theorie stabilere Zusammensetzungen voraussagt, die magischen Zahlen.

Doch auch hier gibt es Ausnahmen, die Inseln der Inversion. Unter der Führung von Physikern des Exzellenzclusters Universe an der Technischen Universität München (TUM) hat sich ein internationales Forscherteam die zuerst entdeckte dieser Inseln genauer angesehen. Ihre Resultate veröffentlichten sie nun in Physical Review Letters.


Der Krebsnebel, Überrest einer gigantischen Supernova. Bild: ESO

Alle chemischen Elemente, die wir auf der Erde kennen, stammen aus dem Weltall. Die häufigsten Elemente im Universum, Wasserstoff und Helium, bildeten sich bereits kurz nach dem Urknall. Andere Elemente wie Kohlenstoff oder Sauerstoff entstehen erst später durch die Fusion von Atomkernen im Inneren von Sternen. Elemente, die schwerer sind als Eisen verdanken ihre Existenz gigantischen Sternexplosionen, auch Supernovae genannt. Dazu zählen beispielsweise die Edelmetalle Gold und Silber oder das radioaktive Uran.

In der Hexenküche einer Supernova entstehen eine Vielzahl massereicher Atomkerne, die über verschiede kurzlebige Zwischenstadien zu stabilen Elementen zerfallen. Analog zum Schalenmodell der Elektronen haben die Kernphysiker ein Modell entwickelt, das für bestimmte Neutronen- und Protonenzahlen eine besondere Stabilität voraussagt. Dies sind die „magischen Zahlen“. Bei ihnen ist eine Schale voll besetzt, der Kern nahe an der idealen Kugelform.

Doch es gibt auch „magische“ Atomkerne, die von der erwarteten Schalenstruktur abweichen. Ein internationales Forscherteam unter der Führung von Physikern des Exzellenzclusters Universe an der TU München hat sich Kerne in einem Bereich mit der magischen Neutronenzahl 20, der „Insel der Inversion“ genannt wird, genauer angesehen. Messungen am Instrument REX-ISOLDE, einem Beschleuniger für radioaktive Ionenstrahlen am CERN, führten dabei zu überraschenden Resultaten.

In ihrem Experiment untersuchten die Wissenschaftler das neutronenreiche Isotop Magnesium-32, indem sie einen Magnesium-30-Strahl auf eine Titanfolie schossen, die mit Tritium, schwerem Wasserstoff, beladen war. In einer so genannten Paartransferreaktion wurden zwei Neutronen vom Tritium abgestreift und auf den Magnesium-Kern übertragen, der sich damit in Magnesium-32 umwandelte.

Eigentlich sollte das neutronenreiche Isotop Magnesium-32, dessen Kern aus 20 Neutronen und 12 Protonen besteht, magisch sein und damit eine sphärische Form aufweisen. Doch der niedrigste Energiezustand im Magnesium-32 ist nicht kugelförmig sondern deformiert. Der Kern hat eher die Form eines American Footballs. Die sphärische Konfiguration sollte erst bei hohen Anregungsenergien entstehen.

Erstmals konnten nun die Forscher die Existenz eines kugelförmigen Magnesium-32-Kerns nachweisen. Doch die Herstellung des kugelförmigen Magnesium-32-Kerns gelang schon bei viel niedrigerer Energie als theoretisch vorhergesagt. Damit stellt dieses Ergebnis die theoretischen Modelle zur Beschreibung der Veränderung der Schalenstruktur in dieser und anderen Regionen der Nuklidkarte teilweise wieder infrage.

"Die Freude war groß, dass es uns endlich gelungen ist, auch die sphärische Form des Magnesium-32-Kerns nachweisen zu können," sagt Professor Krücken, Inhaber des Lehrstuhls für Physik der Hadronen und Kerne an der TU München. "Doch diese Erkenntnisse stellen uns Physiker auch gleich wieder vor neue Herausforderungen. Um den genauen Verlauf der Elementsynthese in Sternexplosionen vorherzusagen, müssen wir den Mechanismus genauer verstehen, der die veränderte Schalenstruktur herbeiführt." Die Wissenschaftler gehen davon aus, dass es noch vieler weiterer Experimente bedarf, um die Abläufe rund um die mysteriösen Inseln der Inversion und neue magische Zahlen widerspruchsfrei beschreiben zu können.

Die Arbeiten wurden unterstützt aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF), der Deutschen Forschungsgemeinschaft (DFG), insbesondere dem Exzellenzcluster Origin and Structure oft he Universe, der Europäischen Gemeinschaft, dem Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO), dem Helmholtz International Center for FAIR (Facility for Antiproton and Ion Research) sowie des US Department of Energy (US-DOE).

Originalpublikation:

Discovery of the Shape Coexisting 0+ State in 32Mg by a Two Neutron Transfer Reaction,
K. Wimmer et.al., Physical Review Letters, 105, 252501 (2010) –
DOI: 10.1103/PhysRevLett.105.252501
Kontakt:
Prof. Dr. Reiner Krücken
Technische Universität München
Physik-Department, E 12
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12434 – Fax: +49 89 289 12435
E-Mail: Reiner.Kruecken@ph.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://dx.doi.org/10.1103/PhysRevLett.105.252501
http://mediatum2.ub.tum.de/node?id=1063369

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics