Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unterwegs in einer Trillionstel Sekunde

24.02.2016

Forschern ist es gelungen, die Richtung ultraschneller Elektronen mithilfe eines Lasers zu kontrollieren

Eine Attosekunde oder eine Trillionstel Sekunde: Mit dieser unvorstellbaren Geschwindigkeit bewegen sich Elektronen in Atomen und Molekülen und bestimmen so chemische, physikalische und biologische Prozesse wie die Photosynthese oder Verbrennungen.


Schematische Darstellung des Experiments: Die Laserpulse (rote Wellen) kontrollieren die Elektronen (grün), die von Atomen (pink) abgegeben werden. Grafik: Maurizio Contran, Politechnikum Mailand/Italien

Einem internationalen Team von Wissenschaftlerinnen und Wissenschaftlern ist es erstmals gelungen, mit einem so genannten Freie-Elektronen-Laser die Bewegungsrichtung von Elektronen in solchen Abläufen zu kontrollieren. Die Ergebnisse, die das Team in der Fachzeitschrift Nature Photonics veröffentlicht hat, eröffnen neue Möglichkeiten für Studien zu natürlichen Prozessen in Attosekundenschnelle.

Eine Arbeitsgruppe unter der Leitung von Prof. Dr. Frank Stienkemeier vom Physikalischen Institut der Universität Freiburg hat die für die Experimente genutzte Apparatur konzipiert und ihren Aufbau als Teil des Freie-Elektronen-Lasers FERMI am Forschungszentrum Elettra-Sincrotrone in Triest/Italien koordiniert.

Freie-Elektronen-Laser sind wegen ihrer aufwendigen Technik und Größe nur an wenigen Standorten weltweit zu finden. Sie basieren auf einer Technik, die in den vergangenen Jahren entwickelt wurde, und die Laserlicht im Bereich der unsichtbaren, so genannten extrem-ultravioletten (XUV) Strahlung oder der Röntgenstrahlung erzeugt.

Laser geben elektromagnetische Strahlen ab, die gegenüber anderen Lichtquellen den Vorteil haben, dass sie Licht in wesentlich höherer Intensität, scharfer Bündelung und großer Kohärenz – also einheitlichen Wellen – abgeben. Die von Stienkemeier und seinem Team entwickelte und mithilfe der Werkstätten des Physikalischen Instituts gebaute Apparatur, genannt Low Density Matter (LDM) Beamline, nutzt diese XUV- und Röntgenstrahlen für Experimente mit isolierten Atomen und Molekülen.

In der LDM-Beamline haben Forscherinnen und Forscher unter Beteiligung der Freiburger Arbeitsgruppe zwei Laserfelder unterschiedlicher Farben in einer zeitlichen Auflösung von drei Attosekunden erzeugt und damit die Richtung von Elektronen kontrolliert, die von Atomen abgegeben wurden. Elektronen sind Elementarteilchen, die in Atomen gebunden und damit grundlegend für chemische Verbindungen sind.

Während Atome Bindungen in Femtosekunden – einer Billionstel Sekunde – eingehen, bewegen sich Elektronen tausendmal schneller und steuern chemische, physikalische und biologische Prozesse.
Im nächsten Schritt wollen die Wissenschaftler mit der neuen Technik komplexere natürliche Vorgänge wie die Katalyse erforschen.

An der veröffentlichten Arbeit waren Forscher aus Italien, Japan, Russland, Australien, Slowenien und den USA beteiligt sowie vom European XFEL in Hamburg, vom Max-Planck-Institut für Kernphysik in Heidelberg und der Technischen Universität Berlin.

Originalpublikation:
K. C. Prince et al. (2016): Coherent control with a short-wavelength free-electron laser. In: Nature Photonics. DOI 10.1038/nphoton.2016.13
www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2016.13.html

Kontakt:
Prof. Dr. Frank Stienkemeier
Physikalisches Institut
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7609
E-Mail: stienkemeier@uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-24.24

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmischer Staub auf Ballonfahrt – Experiment zur Planetenentstehung
23.10.2019 | Universität Duisburg-Essen

nachricht Physiker der Saar-Uni wollen neuartige Mikroelektronik entwickeln
23.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

Erstmals konnten ETH-​Forscherinnen und Forscher die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatwerkstoffe entwickelt werden können.

Magnesium und seine Legierungen halten vermehrt Einzug in die Medizin: einerseits als Material für Implantate in der Knochenchirurgie wie Schrauben oder...

Im Focus: Researchers watch quantum knots untie

After first reporting the existence of quantum knots, Aalto University & Amherst College researchers now report how the knots behave

A quantum gas can be tied into knots using magnetic fields. Our researchers were the first to produce these knots as part of a collaboration between Aalto...

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wiegende Halme auf den Designers‘ Open

23.10.2019 | Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Abbau von Magnesiumlegierung auf der Nanoskala beobachtet

23.10.2019 | Materialwissenschaften

Wiegende Halme auf den Designers‘ Open

23.10.2019 | Veranstaltungsnachrichten

Kosmischer Staub auf Ballonfahrt – Experiment zur Planetenentstehung

23.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics