Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Untersuchungen des Skyrmion-Hall-Effekts zeigen überraschende Ergebnisse

27.12.2016

Weiterer Schritt zur Nutzung von Skyrmionen für anwendungsrelevante Systeme

Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) ist ein weiterer Durchbruch in der Grundlagenforschung für mögliche Datenspeichertechnologien der Zukunft gelungen. Bereits im März 2016 hatte das internationale Forscherteam Strukturen vorgestellt, in denen elektronische Daten wie auf magnetischen Schieberegistern, sogenannten Racetracks, in Form magnetischer Wirbelstrukturen oder Skyrmionen abgelegt werden könnten. Die Idee verspricht schnelle Zugriffszeiten und hohe Speicherdichten bei niedrigem Energieverbrauch. Im Rahmen eines Folgeprojekts konnte nun die milliardenfach reproduzierbare Verschiebung von Skyrmionen zwischen verschiedenen Positionen erreicht werden, also genau der Vorgang, der im Racetrack-Schieberegister für den Transport von Information verwendet werden soll. Damit ist ein weiterer kritischer Schritt für die Nutzung von Skyrmionen in Racetracks genommen. Die Forschungsarbeit wurde im Fachmagazin Nature Physics publiziert.


Die magnetische Struktur eines Skyrmions ist symmetrisch um dessen Kern; Pfeile zeigen die Richtung der Spins an.

Abb./©: Benjamin Krüger, JGU

Bei den Experimenten wurden Dünnschichtfilme verwendet, also vertikal, nicht symmetrisch gestapelte Nano-Lagen verschiedener Materialien, die zusammen die Inversionssymmetrie brechen und so jene speziellen Spinstrukturen, die Skyrmionen, stabilisieren. Die Strukturen ähneln konzeptionell einem Haarwirbel und lassen sich ebenso schlecht entfernen. Damit sind die Strukturen jedoch auch stabiler, was ein weiteres Argument für deren Nutzung in Speichertechnologie liefert.

Da Skyrmionen mit elektrischen Strömen verschoben werden können und sie eine abstoßende Kraft vom Rand eines Nanodrahts wie auch von einzelnen Defekten im Material spüren, verfügen sie über die einzigartige Fähigkeit, sich relativ störungsfrei durch ein Material zu bewegen. Gerade diese Eigenschaften sind besonders wünschenswert für die Racetrack-Speicher, bei denen statische Lese- und Schreibköpfe vorliegen und die magnetischen Bits an diesem vorbeigeführt werden. Damit wäre das Design zusätzlich auch extrem stoßresistent, was für mobile Anwendungen zentral ist. Ein wichtiger Aspekt bei der Skyrmion-Dynamik ist allerdings, dass diese sich nicht nur entlang der Stromrichtung bewegen, sondern auch eine Komponente senkrecht dazu aufweisen. Dies führt zu einem Winkel zwischen Skyrmion-Bewegung und Stromrichtung, den man als Skyrmion-Hall-Winkel bezeichnet und der theoretisch vorhergesagt ist. Die Skyrmionen sollten sich demnach unter dem konstanten Skyrmion-Hall-Winkel bewegen, bis sie den Rand des magnetischen Materials spüren und dann in einem konstanten Abstand zu diesem bleiben.

Im Rahmen ihrer aktuellen Forschungsarbeit haben die Forscher der JGU und des MIT nun zum einen bewiesen, das milliardenfach reproduzierbare Skyrmion-Bewegung praktisch tatsächlich möglich ist und mit hohen Geschwindigkeiten erfolgen kann. Zum anderen wurde auch der Skyrmion-Hall-Winkel näher untersucht. Dabei stellte sich überraschenderweise heraus, dass dieser von der Geschwindigkeit der Skyrmionen abhängt, also horizontale und vertikale Bewegungskomponenten nicht in gleichem Maße mit der Geschwindigkeit skalieren. Dies wird allerdings durch die Standard-Theorien nicht vorhergesagt. Eine Deformation der Skyrmionen während der Bewegung könnte Teil der Erklärung sein, bis Skyrmionen jedoch komplett verstanden werden, bedarf es noch einiger theoretischer Arbeit.

"Es freut mich wirklich sehr, dass wir schon das zweite hochrangige Paper aus der Kollaboration zwischen JGU und MIT gewonnen haben. Gerade in so kurzer Zeit von nur wenigen Monaten ist das schon etwas Besonderes und ich bin froh, daran teilhaben zu können", betont Kai Litzius, Erstautor der Veröffentlichung. Litzius forscht als Stipendiat der Exzellenz-Graduiertenschule "Materials Science in Mainz" (MAINZ) in der Gruppe von Prof. Dr. Mathias Kläui.

"In hochkompetitiven Forschungsfeldern wie dem Bereich der Skyrmionen bedeuten internationale Kooperationen mit führenden Gruppen einen strategischen Vorteil. Innerhalb von nur zwei Jahren nach Beginn der Zusammenarbeit mit Kollegen am MIT haben wir bereits die zweite hochrangige Publikation in der Nature-Verlagsgruppe veröffentlicht. Die Exzellenz-Graduiertenschule MAINZ fördert dabei den Aufenthalt von Doktorandinnen und Doktoranden aus den USA in Mainz und umgekehrt. Damit leistet MAINZ einen essenziellen Beitrag für die Internationalisierung unserer Ausbildung und ermöglicht gleichzeitig extrem erfolgreiche Forschung", unterstreicht Prof. Dr. Mathias Kläui, Professor am Institut für Physik der JGU und Direktor von MAINZ.

Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.

Veröffentlichung:
Kai Litzius et al.
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy
Nature Physics, 26. Dezember 2016
DOI: 10.1038/nphys4000


Kontakt:
Prof. Dr. Mathias Kläui
Physik der Kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de

Exzellenz-Graduiertenschule Materials Science in Mainz
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26984
Fax +49 6131 39-26983
E-Mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Informationen:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys4000.html – Abstract ;
https://www.uni-mainz.de/presse/74601.php – Pressemitteilung "Internationalem Forscherteam gelingt kontrollierte Bewegung von Skyrmionen" (02.03.2016) ;
https://www.uni-mainz.de/presse/63817.php – Pressemitteilung "Physiker beobachten Bewegung von winzigen Magnetisierungswirbeln" (03.02.2015)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klassisches Doppelspalt-Experiment in neuem Licht
21.01.2019 | Universität zu Köln

nachricht Neue Erkenntnisse über magnetische Quanteneffekte in Festkörpern
21.01.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zweigesichtige Stammzellen produzieren Holz und Bast

Heidelberger Forscher untersuchen einen der wichtigsten Wachstumsprozesse auf der Erde

Für einen der wichtigsten Wachstumsprozesse auf der Erde – die Holzbildung – sind sogenannte zweigesichtige Stammzellen verantwortlich: Sie bilden nicht nur...

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Führende Röntgen- und Nanoforscher treffen sich in Hamburg

22.01.2019 | Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zweigesichtige Stammzellen produzieren Holz und Bast

22.01.2019 | Biowissenschaften Chemie

Wie tickt die rote Königin?

22.01.2019 | Biowissenschaften Chemie

Digitaler Denker: Argument-Suchmaschine hilft bei der Meinungsbildung

22.01.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics