Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universum: Simulationen am Supercomputer

01.09.2015

Davon träumt die Wissenschaft: An einem Computer zu simulieren, wie sich das Universum bis heute entwickelt hat. Forscher aus Würzburg und Heidelberg wollen dem Traum jetzt näher kommen: Sie haben Rechenzeit im Wert von knapp fünf Millionen Euro auf einem Supercomputer bewilligt bekommen.

Der Würzburger Mathematiker Professor Christian Klingenberg und der Heidelberger Astrophysiker Professor Volker Springel haben sich Großes vorgenommen: Sie wollen die zeitliche Entwicklung des Universums von kurz nach dem Urknall bis heute detailliert am Computer simulieren. Dafür genehmigte ihnen die Deutsche Forschungsgemeinschaft (DFG) im Jahr 2012 das Projekt „Exascale simulations of the universe including magnetic fields“.


Ausschnitt aus dem Universum, erzeugt per Computersimulation: Das Universum hat die Struktur von Fäden, die sich im Raum erstrecken und sich in hellen Flecken treffen. Die Flecken sind Galaxienhaufen

Bild: Volker Springel / Christian Klingenberg

Seitdem haben die beiden Professoren so viel erarbeitet, dass sie nun an einen möglichst neuen Höchstleistungsrechner müssen, um mit ihrem Simulationsprojekt weiterzukommen.

In der Bundesrepublik werden mit Geld vom Bund drei große Höchstleistungsrechenzentren betrieben, in Jülich, Stuttgart und Garching. Sie stehen unter der Leitung des Gauss Center for Supercomputing.

Dieses verteilt verschiedene Rechnerarchitekturen auf die drei Zentren, kauft dafür die jeweils neuesten Höchstleistungsrechner und vergibt Rechenzeit an Wissenschaftsteams, die sich dafür bewerben.

So viel Rechenzeit gab es noch nie

Nach einem Aufruf des Gauss Centers an große Rechenzeitprojekte hatte sich auch das Team von Klingenberg und Springel beworben – mit Erfolg. Den Professoren wurden rund 100 Millionen CPU-Stunden auf einem brandneuen Cray-Rechner in Stuttgart zugeteilt.

Theoretisch ist das so, als ob der Rechner ein halbes Jahr lang ausschließlich ihnen zur Verfügung stehen würde. „Noch nie hat das Gauss Center so viel Rechenzeit vergeben“, freut sich Klingenberg. Der finanzielle Wert dieser Zeit belaufe sich auf knapp fünf Millionen Euro. „In Würzburg und Heidelberg sehen wir davon aber nichts, weil das Geld vom Bund direkt in die Rechenzentren fließt.“

Galaxien und Magnetfelder simulieren

In Stuttgart werden die Wissenschaftler ab September 2015 Simulationen durchführen, die auf vorherigen Rechnungen am Höchstleistungszentrum in Garching aufbauen – diese umfassten nur etwa ein Drittel der jetzt geplanten. In Garching gelang es, bei der Simulation Galaxien abzubilden. Bei dem neuen Vorhaben sollen die Galaxien jetzt noch genauer simuliert werden, und zwar unter Berücksichtigung von Magnetfeldern.

„Daraus wird sich ein reicher Schatz an Daten ergeben“, sagt Klingenberg. Aus diesen könnten Astronomen vorhersagen, wo und was sie im Universum beobachten sollten. Alles in allem würden die neuen Simulationen dazu beitragen, ein wesentlich genaueres Bild vom Universum und seiner Entstehung zu erlangen, als es heute der Fall ist.

Kontakt

Prof. Dr. Christian Klingenberg, Institut für Mathematik, Universität Würzburg,
T (0931) 31-85045, klingenberg@mathematik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
14.06.2019 | Technische Universität München

nachricht Ins Innere von Materialien blicken
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics