Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unerwartet langsame Bewegungen unter der Sonnenoberfläche

20.07.2012
Neue Beobachtungen seismischer Schwingungen an der Sonnenoberfläche stellen unser bisheriges Verständnis der Dynamik des Sonneninneren auf die Probe

Die inneren Bewegungen der Sonne sind viel langsamer als vorhergesagt. Anstatt mit der Geschwindigkeit eines Düsenflugzeugs, wie bisher geglaubt, strömt das Plasma dort im Schritttempo.


Konvektionsmuster an der Sonnenoberfläche, gemessen mit dem Instrument HMI an Bord von SDO.
© MPI für Sonnensystemforschung/NASA

Zu diesem Ergebnis kommen Forscher unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Katlenburg-Lindau in einer kommenden Ausgabe des Fachmagazins Proceedings of the National Academy of Sciences of the United States of America (PNAS). Um ins Innere der Sonne zu blicken, nutzen die Wissenschaftler Beobachtungen solarer Oszillationen, die ihnen mithilfe des Solar Dynamics Observatory der NASA gelungen sind. Wie Laurent Gizon und Aaron Birch vom Max-Planck-Institut für Sonnensystemforschung in derselben Ausgabe von PNAS kommentieren, zeigen die neuen Beobachtungen, wie sich mithilfe von SDO-Daten und Helioseismologie das Sonneninnere auf einzigartige Weise erforschen lässt.

In ihrem äußeren Drittel gleicht die Sonne einem Topf mit kochendem Wasser: Getrieben von der gewaltigen Hitze im Innern des Sterns steigt heißes Plasma auf, kühlt weiter oben ab und sinkt dann wieder hinunter. Dieser Vorgang, den Wissenschaftler als Konvektion bezeichnen, transportiert Energie nach außen und bestimmt Struktur und Entwicklung der Sonne.

Den Forschern um Shravan Hanasoge vom Max-Planck-Institut für Sonnensystemforschung ist es nun erstmals gelungen, mithilfe der Helioseismologie die Vorgänge in der Konvektionsschicht aus direkten Beobachtungen der Sonnenoberfläche abzuleiten. Die Helioseismologie ähnelt der irdischen Seismologie. „Wir beobachten Oszillationen der Sonnenoberfläche und nutzen diese, um auf Eigenschaften wie etwa Ströme im Sonneninneren zu schließen”, erklärt Laurent Gizon, Leiter der Abteilung „Physik des Inneren der Sonne und sonnenähnlicher Sterne” am Max-Planck-Institut für Sonnensystemforschung und Professor am Institut für Astrophysik der Universität Göttingen.

Das Plasma strömt mit weniger als einem Meter pro Sekunde

Das Team, zu dem auch amerikanische Forscher der Princeton University, des NASA Goddard Flight Center und der New York University gehören, war in der Lage, die Strömungsgeschwindigkeiten des Plasmas in einer Tiefe von 55000 Kilometern zu bestimmen. Diese Tiefe entspricht acht Prozent des Sonnenradius. Überraschenderweise stellte sich heraus, dass die Strömungsgeschwindigkeiten kleiner als einige Meter pro Sekunde sind. „Das ist hundert Mal weniger als numerische Modelle solarer Konvektion vorhersagen”, ordnet Gizon die neuen Ergebnisse ein.

Schlüssel zu den neuen Ergebnissen waren Daten des NASA-Sonnenobservatoriums SDO, das die Sonnenoberfläche seit Anfang 2010 vom All aus beobachtet. Die Wissenschaftler werteten Messungen des Instruments Helioseismic and Magnetic Imager (HMI) aus. Nur die einzigartige Kombination aus hoher Auflösung und voller räumlicher Abdeckung, die das Sonnenobservatorium bietet, hat diese Analyse ermöglicht. Die riesigen Datenmengen (täglich tausende hochaufgelöste Aufnahmen der gesamten Sonne), die HMI sammelt, werden am Max-Planck-Institut für Sonnensystemforschung im German Data Center for SDO archiviert und aufbereitet, einer in Europa einmaligen Einrichtung.

Akustische Wellen in der Sonne verraten die Geschwindigkeit von Konvektionsströmen

Das HMI-Instrument misst die Strömungsgeschwindigkeit der Sonnenoberfläche. Erreicht eine solare akustische Welle, die im Innern der Sonne gefangen ist, die Oberfläche, so bewegt sie diese – und kann somit vom Instrument HMI erfasst werden. Auf diese Weise konnten die Forscher die Zeit messen, die eine solare akustische Welle braucht, um sich von einem Punkt an der Sonnenoberfläche durch das Innere zu einem anderen Punkt an der Oberfläche auszubreiten. Dabei beeinflussen die Konvektionsströme tief im Innern die Ausbreitungsgeschwindigkeit. So ist es möglich, aus der Messung dieser Ausbreitungsgeschwindigkeiten etwas über die Geschwindigkeit der Konvektionsströme zu lernen. Wie sich dabei das Zusammenspiel solarer akustischer Wellen und der Konvektion modellieren lässt, ist eine aktuelle Fragestellung, der Wissenschaftler im Rahmen des Sonderforschungsbereichs „Astrophysikalische Strömungsinstabilität und Turbulenz“ der Deutschen Forschungsgemeinschaft am Max-Planck-Institut für Sonnensystemforschung und der Universität Göttingen nachgehen.

„Diese unerwartet niedrigen Geschwindigkeiten, die mithilfe der Helioseismologie gemessen wurden, sind das bemerkenswerteste helioseismologische Ergebnis seit dem Start von SDO”, sagt Gizon. „Es gibt keine offensichtliche Möglichkeit, die neuen Beobachtungen und die Theorie miteinander zu versöhnen”, ergänzt Birch. Gizon urteilt zudem: „Die neuen Erkenntnisse werfen nicht nur ein neues Licht auf die Sonne, sondern auch auf unsere derzeitige Unfähigkeit, einen der grundlegendsten physikalischen Prozesse in der Sonne und anderen Sternen zu verstehen: die Konvektion.”

Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung
Telefon: +49 5556 979-462
Email: Krummheuer@­mps.mpg.de
Dr. Shravan M. Hanasoge
Princeton University
Max-Planck-Institut für Sonnensystemforschung
Telefon: +49 5556 979-124
Email: Hanasoge@­mps.mpg.de
Prof. Dr. Laurent Gizon
Georg-August-Universität Göttingen
Max-Planck-Institut für Sonnensystemforschung
Telefon: +49 5556 979-439
Email: Gizon@­mps.mpg.de
Dr. Aaron Birch
Max-Planck-Institut für Sonnensystemforschung
Telefon: +49 5556 979-379
Email: Birch@­mps.mpg.de

Originalveröffentlichungen
Shravan M. Hanasoge, Thomas L. Duvall Jr. und Katepalli R. Sreenivasan
Anomalously weak solar convection
Proceedings of the National Academy of Sciences (PNAS), 24. Juli 2012, online veröffentlicht am 4. Juni 2012, doi: 10.1073/pnas.1206570109
Laurent Gizon und Aaron C. Birch
Helioseismology challenges models of solar convection
Proceedings oft he National Academy of Sciences (PNAS), 24. Juli 2012

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5912646/Konvektion_Sonnenoberflaeche_Helioseismologie?filter_order=L

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Zweifel an grundsätzlichen Annahmen zum Universum
08.04.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Langlebigere Satelliten, weniger Weltraumschrott
08.04.2020 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics