Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrastabile Materialien genau untersucht

23.11.2015

PTB hat die thermische Ausdehnung bei tiefen Temperaturen für zukünftige Weltraummissionen gemessen

Der Weltraum birgt eine Vielzahl faszinierender Objekte, die wir nur erforschen können, indem wir ihre Strahlung auch jenseits des sichtbaren Bereichs beobachten. Für Weltraumteleskope wie das Infrarot-Observatorium Herschel der Europäischen Raumfahrtorganisation ESA, die Strahlung im fernen Infrarot beobachten sollen, ist die Kühlung der Instrumente unerlässlich.


Das Weltraumteleskop Herschel (2009-2013) ermöglichte faszinierende Einblicke in die Entstehung von Sternen.

(Abb.: ESA)

Denn die Instrumente selbst dürfen keine störende Infrarotstrahlung emittieren. Die Spiegel dieser Teleskope, die bei Temperaturen unterhalb von 190°C zum Einsatz kommen, werden aus speziellen ultrastabilen Keramiken wie etwa Siliziumkarbid hergestellt. Um die exakten Abmessungen auch bei diesen niedrigen Einsatztemperaturen richtig zu planen, ist es erforderlich, die thermische Ausdehnung der verwendeten Materialien sehr genau zu kennen.

In einem kürzlich abgeschlossenen ESA-Projekt hat die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig die thermische Ausdehnung dieser Keramiken sowie von einkristallinem Silizium im Temperaturbereich von 266°C bis 20°C mit hoher Genauigkeit gemessen.

In weiten Teilen des untersuchten Temperaturbereichs entspricht die erreichte Genauigkeit einer relativen Längenänderung von etwa einem Milliardstel pro Grad Celsius. Die Untersuchungen zeigen auch, dass die bisher verwendeten Werte für das Referenzmaterial einkristallines Silizium korrigiert werden müssen. Über Letzteres wird in der aktuellen Ausgabe der renommierten Fachzeitschrift Physical Review B berichtet.

Weltraumteleskope wie Herschel erforschen Spektralbereiche, die von der Erde aus nicht zugänglich sind. Als Einsatzort bleibt damit nur der Weltraum. Wie entscheidend es für den Bau solcher Teleskope ist, das thermische Ausdehnungsverhalten der verwendeten Materialien genau zu kennen, wurde bei einer der jüngeren ESA-Missionen deutlich, als die vorab durchgeführten Simulationen letztlich nicht mit den gefertigten Spiegeln übereinstimmten.

Zwar wurden die Unstimmigkeiten nicht erst im Weltraum entdeckt, aber sie führten doch zu unnötigen Verzögerungen. Um derartige Überraschungen zukünftig vermeiden zu können, waren genauere Untersuchungen der verwendeten Materialien erforderlich. Für ihre Untersuchungen im Rahmen des ESA-Projektes setzte die Gruppe von René Schödel das Ultrapräzisionsinterferometer der PTB ein. Damit maßen sie die Länge der Proben im gesamten Temperaturbereich mit Nanometer-Genauigkeit.

Dieses Interferometer ist weltweit einzigartig. Um Messungen mit ähnlicher Genauigkeit auch in anderen Instituten und mit weniger Aufwand durchführen zu können, werden üblicherweise Referenzmaterialien mit genau bekannter thermischer Ausdehnung als Vergleich herangezogen. Ein solches Referenzmaterial, einkristallines Silizium, das sich durch eine durchgehende Gitterstruktur mit sehr wenigen Störstellen auszeichnet, haben die Wissenschaftler in dem Projekt ebenfalls untersucht.

Wie einige der ultrastabilen Keramikmaterialien auch, hat Silizium die kuriose Eigenschaft, dass es sich hin zu tiefen Temperaturen ab einer gewissen Temperatur wieder auszudehnen beginnt. Auch diese – im Alltag unerwartete – Dynamik haben die PTB-Wissenschaftler genau vermessen. Ein wichtiges Ergebnis ihrer Messungen: Sie fanden in einem weiten Temperaturbereich signifikante Abweichungen von den bisher für einkristallines Silizium verwendeten Referenzwerten. Dies deutet darauf hin, dass die Referenzwerte korrigiert werden müssen.

Die Ergebnisse des Projekts sind von Bedeutung für weitere, bereits geplante Weltraummissionen wie das James Webb Weltraumteleskop (JWST), für das Einsatztemperaturen unterhalb von 220°C geplant sind, oder das Infrarot-Weltraumteleskop für Kosmologie und Astrophysik (SPICA), bei dem sogar noch niedrigere Einsatztemperaturen angedacht sind.
es/ptb

Ansprechpartner:
René Schödel, PTB-Fachbereich 5.4 Interferometrie an Maßverkörperungen, Tel. (0531) 592-5400, E-Mail: rene.schoedel@ptb.de

Die wissenschaftliche Veröffentlichung:
Thomas Middelmann, Alexander Walkov, Guido Bartl, René Schödel: Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K. Phys. Rev. B 92, 174113 (2015)

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf...
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.174113

Erika Schow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics