Ultraschnell schaltbare Metamaterialien

Schematische Darstellung des schaltbaren Metamaterials. Die Nanozylinder aus Galliumarsenid sind rund 300 Nanometer hoch. Werden sie mit Laserpulsen beleuchtet, absorbieren sie die Lichtteilchen. Abbildung: Maxim Shcherbakov

Optische Metamaterialien muten für den Physik-Laien an wie aus einer anderen Welt – lassen sich mit solchen Materialien doch potenziell Dinge unsichtbar machen oder Licht in die falsche Richtung brechen.

Möglich wird das durch ihre besondere Struktur: Metamaterialien bestehen aus winzigen maßgeschneiderten Nanopartikeln, die mit elektromagnetischer Strahlung – etwa Licht – auf völlig andere Weise wechselwirken als natürlich vorkommende Materialien.

Die Nanostrukturierung zur Herstellung von Metamaterialien erfolgt zumeist mittels lithografischer Verfahren. Ist sie erst einmal abgeschlossen, so bestimmt sie dauerhaft die Eigenschaften des Metamaterials. Einem Team von Physikern der Staatlichen Universität Moskau (Russland), der Sandia National Laboratories in Albuquerque (USA) und der Friedrich-Schiller-Universität Jena ist es nun jedoch gelungen, ein Metamaterial mit schaltbaren Eigenschaften zu entwickeln:

Im Fachmagazin Nature Communications stellen die Forscher ultraschnell schaltbare Metamaterialien vor, deren nanoskopische Bausteine bis zu 100 Milliarden Mal in der Sekunde an- bzw. ausgeschaltet werden können (DOI: 10.1038/s41467-017-00019-3).

Die schaltbaren Metamaterialien werden mittels Elektronenstrahllithographie hergestellt. „Sie bestehen aus einer dünnen Schicht des Halbleiterwerkstoffs Galliumarsenid, auf die Nanopartikel aufgebracht sind, die Lichtteilchen einfangen können“, erklärt Dr. Isabelle Staude von der Friedrich-Schiller-Universität Jena.

Mit anderen Worten: Wenn Licht auf das Material trifft, wird es in den Nanopartikeln eingeschlossen – „verschluckt“ – und kann so intensiv mit dem Material wechselwirken. Die Nanopartikel bestehen ebenfalls aus Galliumarsenid, das von einem glasartigen Material umschlossen ist und haben eine Größe von 300 Nanometern.

Das Prinzip des schaltbaren Metamaterials beruht auf der Erzeugung von Elektronen und entsprechenden Elektronenfehlstellen im Halbleitermaterial durch die Einstrahlung von Licht. Dabei handelt es sich um einen gängigen optoelektronischen Effekt, welcher z. B. auch in Solarzellen und Detektoren Verwendung findet. Durch die Lichtkonzentration in den Nanopartikeln wird dieser Effekt verstärkt. „Wenn wir das Metamaterial mit einem ultrakurzen Laserpuls beleuchten, so absorbieren die Nanopartikel die Lichtteilchen und regen darin die Elektronen und Elektronenfehlstellen an“, erläutert Physikerin Staude.

Die Gegenwart der Ladungsträger führt wiederum dazu, dass sich die optischen Materialeigenschaften des Galliumarsenids im Innern der Nanopartikel verändern. Dies wirkt sich dann direkt auf die optischen Eigenschaften des Metamaterials selbst aus: Während es in seinem Ausgangszustand eine spiegelnde Oberfläche besitzt, die das Licht reflektiert, verliert das Material seine reflektierende Eigenschaften durch die Absorption von Licht.

In Sekundenbruchteilen treffen anschließend Elektronen und Fehlstellen einander und „löschen“ sich gegenseitig aus, was dazu führt, dass das Material seine spiegelnde Oberfläche wiedererlangt. „Diese Funktionsweise lässt sich in Zukunft vielleicht für die Konstruktion photonischer Bauelemente nutzen, beispielsweise in der optischen Signalübertragung oder für neue Mikroskopieverfahren“, sagt Dr. Staude. Bislang existiere das schaltbare Metamaterial lediglich im Labor. Bevor es auch in größerem Maßstab produziert werden wird, so erwartet die Jenaer Physikerin, sei jedoch noch weitere Grundlagenforschung nötig.

Original-Publikation:
Shcherbakov MR et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces, Nature Communications 8, Article number: 17 (2017), DOI:10.1038/s41467-017-00019-3
https://www.nature.com/articles/s41467-017-00019-3

Kontakt (in Jena):
Dr. Isabelle Staude
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Abbe Center of Photonics
Albert-Einstein-Str. 6, 07745 Jena
Tel.: 03641 / 947566
E-Mail: isabelle.staude[at]uni-jena.de

http://www.uni-jena.de

Media Contact

Dr. Ute Schönfelder idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer