Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnell schaltbare Metamaterialien

19.05.2017

Physiker der Uni Jena entwickeln mit Partnern aus Russland und den USA Metamaterialien, die sich als ultraschnelle optische Schalter eignen

Optische Metamaterialien muten für den Physik-Laien an wie aus einer anderen Welt – lassen sich mit solchen Materialien doch potenziell Dinge unsichtbar machen oder Licht in die falsche Richtung brechen.


Schematische Darstellung des schaltbaren Metamaterials. Die Nanozylinder aus Galliumarsenid sind rund 300 Nanometer hoch. Werden sie mit Laserpulsen beleuchtet, absorbieren sie die Lichtteilchen.

Abbildung: Maxim Shcherbakov


Physikerin Dr. Isabelle Staude vom Institut für Angewandte Physik der Universität Jena.

Foto: Jan-Peter Kasper/FSU

Möglich wird das durch ihre besondere Struktur: Metamaterialien bestehen aus winzigen maßgeschneiderten Nanopartikeln, die mit elektromagnetischer Strahlung – etwa Licht – auf völlig andere Weise wechselwirken als natürlich vorkommende Materialien.

Die Nanostrukturierung zur Herstellung von Metamaterialien erfolgt zumeist mittels lithografischer Verfahren. Ist sie erst einmal abgeschlossen, so bestimmt sie dauerhaft die Eigenschaften des Metamaterials. Einem Team von Physikern der Staatlichen Universität Moskau (Russland), der Sandia National Laboratories in Albuquerque (USA) und der Friedrich-Schiller-Universität Jena ist es nun jedoch gelungen, ein Metamaterial mit schaltbaren Eigenschaften zu entwickeln:

Im Fachmagazin Nature Communications stellen die Forscher ultraschnell schaltbare Metamaterialien vor, deren nanoskopische Bausteine bis zu 100 Milliarden Mal in der Sekunde an- bzw. ausgeschaltet werden können (DOI: 10.1038/s41467-017-00019-3).

Die schaltbaren Metamaterialien werden mittels Elektronenstrahllithographie hergestellt. „Sie bestehen aus einer dünnen Schicht des Halbleiterwerkstoffs Galliumarsenid, auf die Nanopartikel aufgebracht sind, die Lichtteilchen einfangen können“, erklärt Dr. Isabelle Staude von der Friedrich-Schiller-Universität Jena.

Mit anderen Worten: Wenn Licht auf das Material trifft, wird es in den Nanopartikeln eingeschlossen – „verschluckt“ – und kann so intensiv mit dem Material wechselwirken. Die Nanopartikel bestehen ebenfalls aus Galliumarsenid, das von einem glasartigen Material umschlossen ist und haben eine Größe von 300 Nanometern.

Das Prinzip des schaltbaren Metamaterials beruht auf der Erzeugung von Elektronen und entsprechenden Elektronenfehlstellen im Halbleitermaterial durch die Einstrahlung von Licht. Dabei handelt es sich um einen gängigen optoelektronischen Effekt, welcher z. B. auch in Solarzellen und Detektoren Verwendung findet. Durch die Lichtkonzentration in den Nanopartikeln wird dieser Effekt verstärkt. „Wenn wir das Metamaterial mit einem ultrakurzen Laserpuls beleuchten, so absorbieren die Nanopartikel die Lichtteilchen und regen darin die Elektronen und Elektronenfehlstellen an“, erläutert Physikerin Staude.

Die Gegenwart der Ladungsträger führt wiederum dazu, dass sich die optischen Materialeigenschaften des Galliumarsenids im Innern der Nanopartikel verändern. Dies wirkt sich dann direkt auf die optischen Eigenschaften des Metamaterials selbst aus: Während es in seinem Ausgangszustand eine spiegelnde Oberfläche besitzt, die das Licht reflektiert, verliert das Material seine reflektierende Eigenschaften durch die Absorption von Licht.

In Sekundenbruchteilen treffen anschließend Elektronen und Fehlstellen einander und „löschen“ sich gegenseitig aus, was dazu führt, dass das Material seine spiegelnde Oberfläche wiedererlangt. „Diese Funktionsweise lässt sich in Zukunft vielleicht für die Konstruktion photonischer Bauelemente nutzen, beispielsweise in der optischen Signalübertragung oder für neue Mikroskopieverfahren“, sagt Dr. Staude. Bislang existiere das schaltbare Metamaterial lediglich im Labor. Bevor es auch in größerem Maßstab produziert werden wird, so erwartet die Jenaer Physikerin, sei jedoch noch weitere Grundlagenforschung nötig.

Original-Publikation:
Shcherbakov MR et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces, Nature Communications 8, Article number: 17 (2017), DOI:10.1038/s41467-017-00019-3
https://www.nature.com/articles/s41467-017-00019-3

Kontakt (in Jena):
Dr. Isabelle Staude
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Abbe Center of Photonics
Albert-Einstein-Str. 6, 07745 Jena
Tel.: 03641 / 947566
E-Mail: isabelle.staude[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der Zeit atomarer Vorgänge auf der Spur
22.02.2019 | Max-Planck-Institut für Kernphysik

nachricht Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst
22.02.2019 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

22.02.2019 | Physik Astronomie

Forschergruppe der TH Lübeck untersucht Grundwasserneubildung in Zypern und Jordanien

22.02.2019 | Geowissenschaften

Wissenschaftler forschen an neuer Methode zum Aufbau eines künstlichen Eierstocks

22.02.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics