Ultrapräzise Zeitsignale

Hochgenaue Atomuhren speisen Laserlicht in ein Glasfaser-Netzwerk ein: So werden große europäische Forschungszentren miteinander verbunden. © Stefan Schröder/Uni Bonn

Die Beteiligung der Universität Bonn ist in zweierlei Hinsicht ungewöhnlich. Das Konsortium besteht nahezu ausschließlich aus europäischen nationalen Metrologie-Instituten sowie hochspezialisierten Firmen.

„Dass wir als Universität hier einen Fuß in die Tür bekommen haben, ist ein großartiger Erfolg“, sagt Prof. Simon Stellmer vom Physikalischen Institut der Universität Bonn. „Außerdem ist dies ein Paradebeispiel für die hervorragende interdisziplinäre Zusammenarbeit an der Universität Bonn.“

An dem Projekt beteiligt sind Prof. Jürgen Kusche vom Institut für Geodäsie und Geoinformation, Prof. Dieter Meschede (Quantentechnologie, Institut für Angewandte Physik) und Prof. Simon Stellmer (Quantenmetrologie, Physikalisches Institut).

Sie gehören zu den transdisziplinären Forschungsbereichen (TRAs) „Bausteine der Materie und grundlegende Wechselwirkungen“ sowie „Innovation und Technologie für eine nachhaltige Zukunft“ der Universität Bonn.

Zukünftig sollen der Wissenschaft ultrapräzise Zeit- und Frequenzinformationen durch eine gemeinsame europäische Forschungsinfrastruktur bereitgestellt werden. Bereits jetzt wird Laserlicht über ausgewählte Glasfaserverbindungen quer durch Europa geschickt, in Zukunft soll die Frequenz dieses Lichtes durch mehrere Atomuhren aber auf 18 Stellen nach dem Komma genau festgelegt werden.

Nutzer könnten dann – ähnlich wie bei der Schwingung einer Pendeluhr – daraus eine Zeitskala ableiten, die überall in Europa exakt genau gleich ist und zur Synchronisierung von lokalen Atomuhren dient.

Eine noch exaktere Zeitbestimmung würde zum Beispiel für eine höhere Genauigkeit bei Navigationssystemen sorgen. „Sie wäre, bei Ausnutzung relativistischer Effekte, auch für die Vermessung des Erdgravitationsfeldes und die Erfassung des Klimawandels – abschmelzende Gletscher und steigende Meeresspiegel – sowie für die Radioastronomie wichtig“, sagt Prof. Kusche.

Die Wissenschaftler der Universität Bonn engagieren sich in der Entwicklung der wissenschaftlichen Anwendungen und dem Erkenntnistransfer zu Wirtschaft und Politik. Von den rund drei Millionen Euro, die die Europäische Union für das Projekt in den nächsten zwei Jahren bereitstellt, fließen rund 230.000 Euro an die Universität Bonn.

Das Internet-Verbindungsnetzwerk GÉANT (deutsch: „Gigant“) koordiniert das Projekt CLONETS-DS, an dem zahlreiche Wissenschaftler aus Deutschland, Polen, Frankreich, Italien, Tschechien, Spanien und dem Vereinigten Königreich beteiligt sind.

Die anderen deutschen Projektpartner sind die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, die TU München sowie das Unternehmen Menlo Systems GmbH.

Prof. Dr. Simon Stellmer
Arbeitsgruppe Quantenmetrologie
Universität Bonn
Tel. 0228/73-3720
E-Mail: stellmer@uni-bonn.de

Media Contact

Johannes Seiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-bonn.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer