Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzzeitspektroskopie deckt Einzelschritte von Phasenübergängen auf

04.10.2016

Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen deckt bisher unbekannten mikroskopischen Mechanismus beim Isolator-Metall-Phasenübergang auf. Durch einen selbstverstärkenden Schmelzprozess - induziert durch photoangeregte Elektronen - wird der isolierende Zustand innerhalb weniger Femtosekunden aufgehoben. Die Arbeit wurde nun in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht.

Phasenübergänge sind Änderungen der Eigenschaften von Materialien, die zum Beispiel bei Temperatur- und Druckänderungen auftreten. Der am besten bekannte Phasenübergang ist der von flüssigem Wasser zu Wasserdampf. Phasenübergänge liegen aber auch in anderen Materialien vor, zum Beispiel wenn sie von einem supraleitenden zu einem normal leitenden Zustand oder von einem Isolator zu einem elektrischen Leiter übergehen. Bei allen diesen Phasenübergängen liegen der Änderung der makroskopischen Eigenschaften diverse mikroskopische Prozesse zugrunde. Bei der Supraleitung ist dies die Bildung von neuen Zuständen aus zwei Elektronen und beim Übergang vom Isolator zum metallischen Leiter ist dies die starke Zunahme der freien Ladungsträger, die bei einer Erwärmung eintritt. Bis vor wenigen Jahren konnte man Phasenübergänge nicht „genügend schnell“ detektieren, um den Zeitablauf dieser mikroskopischen Prozesse zu erkennen. In neuesten Untersuchungen konnten diese Einschränkungen mit Hilfe geeigneter optischer Pulse und mit Röntgenlichtpulsen durchbrochen werden.


Photoemissionsspektren des Titan-Diselenid-Systems

Quelle: Stefan Mathias, Georg-August-Universität Göttingen

Ein internationales Physikerteam aus Kaiserslautern, Göttingen, Kiel sowie Boulder (Colorado, USA) hat sich nun einen Phasenübergang mit sehr hoher Zeitauflösung untersucht. Von dem verwendeten Material, Titan-Diselenid (TiSe2), war bekannt, dass es einen Isolator-Metall-Phasenübergang bei einer Temperatur von circa 200 Kelvin aufweist. Das Team berichtet nun in der renommierten Fachzeitschrift Nature Communications darüber, wie es mit Echtzeitspektroskopie nach einer ultrakurzen optischen Anregung einen Phasenübergang charakterisieren konnte. Mit zeitaufgelöster Photoemissionsspektroskopie mit ultrakurzen Röntgenpulsen konnte die Besetzung von elektronischen Energiezuständen auf Zeitskalen von Femtosekunden (10-15 s) verfolgt werden. Das Material wurde bei Temperaturen, bei denen es als Isolator wirkt, durch einen ultrakurzen Laserpuls sehr schnell auf Temperaturen jenseits des Phasenübergangs aufgeheizt. Die Photoemissionsspektroskopie zeigte dann in Echtzeit, wie der Energieabstand zwischen besetzten und unbesetzten elektronischen Zuständen durch die ultraschnelle Dynamik der angeregten Elektronen zusehends geschlossen wird.

Zentrales Forschungsergebnis ist, dass eine optische Anregung des Materials einen sich selbst verstärkenden Schmelzprozess induziert, der den Übergang von isolierenden in metallischen Zustand erheblich beschleunigt. Nach Anregung von Elektronen über die elektronische Bandlücke hinweg kommt es durch Energieverlust-Prozesse dieser Elektronen zu einer weiteren, sehr starken Ladungsträgermultiplikation. Die Forscher konnten nachweisen, dass diese zusätzlichen Ladungsträger die Energiebandlücke weiter verkleinern, was wiederum den Multiplikationsprozess verstärkt. Mit Hilfe eines theoretisches Modells, das wesentliche Aspekte der elektronischen Dynamik abbildet, konnte dieser selbstverstärkende Effekt als zugrundeliegende Ursache des ultraschnellen Phasenübergangs identifiziert werden.

Die hier erzielten Ergebnisse sind auch unter zwei weiteren Aspekten interessant. Zum einen ist Titan-Diselenid ein komplexes Material, das sich einer Beschreibung als reines Metall oder reiner Isolator/Halbleiter entzieht. Komplexe Materialien haben in den letzten Jahrzehnten sehr stark an Bedeutung gewonnen und werden deshalb auch in der Grundlagenforschung intensiv untersucht. Titan-Diselenid ist deshalb komplex, weil elektronische und Gitterfreiheitsgrade in einer komplizierten Weise gekoppelt sind. Bei tiefen Temperaturen liegt dieses Material in einem sogenannten Ladungsdichtewellen-Zustand vor, bei dem die Kristallstruktur und die elektronische Struktur im Vergleich zu Temperaturen jenseits des Phasenübergangs verändert sind. Zum anderen betritt die Untersuchung von Phasenübergängen auf der hier untersuchten Zeitskala Neuland, weil durch die Anregungsbedingungen Phasen realisiert werden können, die im thermischen Gleichgewicht nicht vorkommen.

Der gefundene Mechanismus wird als universell für eine große Anzahl von Phasenübergangs-Materialien angesehen. Die Forschungsergebnisse eröffnen somit die Perspektive, Einzelschritte des Phasenübergangs gezielt zu kontrollieren und zu manipulieren.

Zentrale Teile der Forschung wurden im Rahmen zweier Sonderforschungsbereiche der Deutschen Forschungsgemeinschaft durchgeführt: SFB 1073 (Kontrolle von Energiewandlung auf atomaren Skalen) und SFB/TRR 173 (Spin+X) sowie dem Landesforschungszentrum OPTIMAS der TU Kaiserslautern. Die beteiligten Teams stammen von der Technischen Universität Kaiserslautern, der Georg-August-Universität Göttingen, der Christian-Albrechts-Universität Kiel sowie der University of Colorado und dem National Institute of Standards in Boulder (Colorado, USA).

Zur Abbildungsreihe: Photoemissionsspektren des Titan-Diselenid-Systems mit hoher Zeitauflösung (Femtosekunden, 10-15 s) ermöglichen, es die Ladungsträgerdynamik während eines optisch angeregten Phasenübergangs mikroskopisch zu untersuchen. In Echtzeit kann man eine ultraschnelle Ladungsträgermultiplikation beobachten und erkennen, wie durch einen selbstverstärkenden Effekt der isolierende Zustand aufgehoben wird. (Quelle: Stefan Mathias, Georg-August-Universität Göttingen)

Ansprechpartner:
Prof. Dr. Stefan Mathias (Georg-August-Universität Göttingen):
Ultrafast Phenomena, http://www.mathias.physik.uni-goettingen.de
Tel. 0551/ 39 7607; smathias@uni-goettingen.de

Prof. Dr. Martin Aeschlimann (Technische Universität Kaiserslautern):
Ultrafast Phenomena At Surfaces, http://www.physik.uni-kl.de/aeschlimann/home/
Tel. 0631 / 205 2273; ma@physik.un-kl.de

Weitere Informationen:
S. Mathias, S. Eich, J. Urbancic, S. Michael, A.V. Carr, S. Emmerich, A. Stange, T. Popmintchev, T. Rohwer, M.Wiesenmayer, A. Ruffing, S. Jakobs, S. Hellmann, P. Matyba, C. Chen, L. Kipp, M. Bauer, H.C. Kapteyn, H.C. Schneider, K. Rossnagel, M.M. Murnane & M. Aeschlimann:
Self-amplified photo-induced gap quenching in a correlated electron material
Nature Communications 2016, AOP; Doi: 10.1038/ncomms12902


Katrin Müller | Technische Universität Kaiserslautern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine kalte Supererde in unserer Nachbarschaft
15.11.2018 | Max-Planck-Institut für Astronomie, Heidelberg

nachricht Die Umgebung macht das Molekül zum Schalter
14.11.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisierte Klebfilmablage und Stringerintegration für den Flugzeugbau

14.11.2018 | Materialwissenschaften

Wie Algen und Kohlefasern die Kohlendioxidkonzentration in der Atmosphäre nachhaltig senken könnten

14.11.2018 | Biowissenschaften Chemie

Was das Meer zur Klimaregulierung beiträgt: Neue Erkenntnisse helfen bei der Berechnung

14.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics