Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurzzeit-Experimente im Schnelldurchlauf

07.02.2019

Laserforscher der MEGAS-Kooperation verkürzen die Dauer von Messkampagnen zur Beobachtung von Elektronenbewegungen um den Faktor 1000

Wer den Mikrokosmos erforschen will, braucht Ausdauer. Experimente, die Ultrakurzzeit-Untersuchungen von Elektronendynamiken beinhalten, dauern oft mehrere Wochen.


Ultrakurzzeitmesskampagnen dauern künftig deutlich kürzer.

Thorsten Naeser

Wenn man die Bewegungen der Elementarteilchen mit Lichtblitzen mit Attosekunden-Dimensionen erkunden will, werden in der Regel aufwendige Messreihen erstellt und riesige Datensätze generiert.

Jetzt haben Laserphysiker des Labors für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ), der Ludwig-Maximilians-Universität (LMU) und der Fraunhofer-Gesellschaft im Projekt MEGAS eine Technologie entwickelt, die die Dauer von Experimentierzeiten für Ultrakurzzeit-Messkampagnen deutlich verkürzt.

Ultraschnelle Photonenspektroskopie verschafft uns seit rund zwei Jahrzehnten Einblicke in die Bewegungen von Elektronen in Atomen, Molekülen und Festkörpern in einer zeitlichen Auflösung von Attosekunden. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde.

Bisher limitieren lange Messzeiten viele Experimente, besonders dann, wenn bei Elektronen, deren Energie, ihr Impuls und ihr Emissionsort in der Materie erkundet werden soll. Denn Elektronen stoßen sich gegenseitig ab. Und für präzise Messungen, möchte man nur wenige Elektronen pro Laserschuss aus der Probe lösen.

Das Problem haben nun Wissenschaftler des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians-Universität München sowie der zwei Fraunhofer-Institute für Lasertechnik und für Angewandte Optik und Feinmechanik im Projekt MEGAS, im Rahmen der Kooperation zwischen der Max-Planck- und der Fraunhofer-Gesellschaft gelöst.

Sie haben eine neue Quelle für Attosekunden-Lichtblitze im extremen ultravioletten Bereich (XUV) des elektromagnetischen Spektrums entwickelt, die sich rund 18,4 Millionen Mal in der Sekunde wiederholen und damit die Experimentierzeiten deutlich verkürzen.

Mit Attosekunden-Lichtblitzen „filmen“ die Forscher die Elektronen in den Experimenten. „Mit der neuen Technologie ist es möglich, rund 1000 Mal höhere Pulswiederholungsraten zu erzeugen, als es bisher möglich war, wodurch die Messzeit um denselben Faktor verkürzt wird“, erklärt Ioachim Pupeza, der Leiter des Projekts.

Herzstück der Technologie ist eine Weiterentwicklung eines Überhöhungsresonators. In ihm werden Laserpulse zwischen Spiegeln so lange verstärkt bis sie Attosekunden-Lichtblitze erzeugen, die über rund 500.000 Photonen (25 bis 60 eV) pro XUV-Blitz verfügen.

Bei einer Wiederholungsrate von rund 18,4 Millionen Blitzen pro Sekunde (18,4 MHz) ist dies eine bisher nicht erreichte Energiedichte. Diese Lichtblitze, konfiguriert als Attosekunden-Pulszüge, ließen die Forscher in einem Demonstrationsexperiment auf einen Wolframkristall auftreffen.

Die Blitze schlugen aus dem Wolfram wiederum Elektronen (Photoelektronen) heraus, deren Eigenschaften die Physiker analysierten (Photonenspektroskopie).

„Während man bei derartigen Experimenten bisher mit niedriger Wiederholungsrate lange auf den nächsten Laserpuls warten musste, werden bei unserem Aufbau praktisch ununterbrochen Photoelektronen aus dem Wolfram detektiert“, erklären Stephan Heinrich und Tobias Saule, beide Erstautoren der Studie.

So ist es nun möglich, Messzeiten in ultraschnellen Photoelektronen-Experimenten, die auch eine räumliche Auflösung beinhalten, von mehreren Tagen auf einige Minuten zu reduzieren.

„Die Entwicklung ist von großer Bedeutung für die Materialforschung und eröffnet neue Möglichkeiten für die Untersuchung von lokalen elektrischen Feldern in Nanostrukturen, zum Beispiel für künftige Anwendungen in der Informationsverarbeitung mit Lichtwellen“, ergänzt Pupeza. (Thorsten Naeser)

Wissenschaftliche Ansprechpartner:

Dr. Ioachim Pupeza

Ludwig-Maximilians-Universität (LMU)
Am Coulombwall 1, 85748 Garching
Labor für Attosekundenphysik (LAP)
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Tel.: +49 89 32905 557
E-Mail: ioachim.pupeza@mpq.mpg.de

www.attoworld.de/frm

Originalpublikation:

T. Saule, S. Heinrich, J. Schötz, N. Lilienfein, M. Högner, O. deVries, M. Plötner, J. Weitenberg, D. Esser, J. Schulte, P. Russbueldt, J. Limpert, M. F. Kling, U. Kleineberg and I. Pupeza
High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate
Nature Communications, Volume 10, Article number: 458 (2019), 28 January 2019
DOI: 10.1038/s41467-019-08367-y

Weitere Informationen:

http://www.mpq.mpg.de

Jessica Gruber | Max-Planck-Institut für Quantenoptik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics