Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultradünne Deckschicht für Elektroden besteht Härtetest

08.03.2019

Elektronik auf Kunststoffbasis – was klingt wie Zukunftsmusik, kommt durch eine Entdeckung aus Marburg einen großen Schritt voran: Elektrische Eigenschaften von Metallelektroden lassen sich präzise kontrollieren, wenn ihr eine extrem dünne organische Schicht aufliegt, die aus einer einzigen Lage von Molekülen besteht. Das berichtet ein Team aus der Marburger Physik in der aktuellen Ausgabe des Fachmagazins „Advanced Functional Materials“.

„Unsere Ergebnisse sind von großer Bedeutung für das wachsende Feld der organischen Elektronik, weil sie dazu beitragen können, die Effizienz von Bauelementen zu verbessern“, erklärt der Physiker Professor Dr. Gregor Witte von der Philipps-Universität, der die Forschungsarbeiten leitete.


Eine unbedeckte Gold-Elektrode (links) zeigt andere elektronische Eigenschaften, als wenn ihr eine monomolekulare Schicht Phthalocyanin aufliegt (rechts).

(Abbildung: Felix Widdascheck; die Bilder dürfen nur für die Berichterstattung über die hier angezeigte wissenschaftliche Veröffentlichung verwendet werden.)


Professor Dr. Gregor Witte (Mitte) sowie Dr. Alrun Aline Hauke und Felix Widdascheck aus seinem Team erforschen die Grundlagen der Organischen Elektronik.

(Foto: Peter Osswald)

Organische Elektronik gilt als Technik der Zukunft: Ihre Bauteile lassen sich preisgünstig produzieren und erlauben neuartige Anwendungen, zum Beispiel Plastik-Verpackungen mit eingebauten Schaltkreisen.

Die Bauelemente der Organischen Elektronik beruhen auf halbleitenden aromatischen Molekülen, die ähnlich zu Biomolekülen und Kunststoffen sind. „Ein zentrales Problem besteht dabei oft in dem elektrischen Kontaktwiderstand, der sich an der Grenzfläche zwischen Metallelektroden und organischem Halbleiter ergibt“, erläutert Witte.

Das Team verwendete eine bestimmte Klasse organischer Moleküle, um sie als extrem dünne Schicht auf einkristalline Gold- und Silber-Elektroden aufzutragen. Damit verfolgte die Forschungsgruppe das Ziel, die elektronischen Eigenschaften an den Grenzflächen der Elektroden gezielt zu verändern, so dass sie zu organischen Halbleitern passen.

Als Deckschicht oder „Contact Primer“ wählten Witte und sein Team chemische Verbindungen aus der Gruppe der Phthalocyanine. „Diese kleeblattförmigen Moleküle sind sehr robust und werden bereits vielfältig als Farbstoff in Kunststoffen eingesetzt“, legt Wittes Mitarbeiterin und Koautorin Dr. Alrun Aline Hauke dar.

Die Arbeitsgruppe schaffte es, die Verbindung als Monolage aufzutragen: Das ist eine Schicht, die nur aus einer einzigen Lage geordneter Moleküle besteht – „etwa ein millionstel Mal so dick wie ein menschliches Haar“, wie Hauke sagt.

So dünn das Deckmaterial auch ist – wirkungsvoll ist es allemal, wie das Forschungsteam durch Messungen nachwies: Über die prozentuale Bedeckung der Elektroden durch die Contact Primer lässt sich die Energie-Barriere exakt einstellen, die Elektronen beim Übergang vom Metall in einen organischen Halbleiter überwinden müssen.

„Unterschiedliche Moleküle liefern dabei unterschiedlich starke Änderungen der Barriere“, ergänzt Erstautor Felix Widdascheck, der ebenfalls zu Wittes Arbeitsgruppe gehört.
Aber wie verhält sich die Deckschicht außerhalb der Idealbedingungen im Labor, etwa auf einer polykristallinen Elektrode oder an Luft statt unter Vakuum?

„Ein idealisiertes Modellsystem ist unerlässlich für theoretische Modellierungen“, führt Hauke aus. „Doch Elektronik-Bauteile sind nicht ideal, sondern haben polykristalline oder amorphe Metallelektroden und müssen auch im täglichen Leben funktionieren, nicht nur im Vakuum.“

Das Team untersuchte deshalb, ob die beobachteten Änderungen auch auf polykristallinen Elektroden auftreten und einem Kontakt mit Luft standhalten. Lassen sich die Moleküle erneut korrekt anordnen, wenn sie durch Lufteinwirkung durcheinander geraten sind? Ja, das geht, führt Hauke aus: „Wir zeigen, dass die molekulare Ordnung durch Glühen der Probe unter Vakuumbedingungen weitgehend wiederhergestellt werden kann.“

Dieser Befund belege, dass der Ansatz auch in einer echten Fertigungsreihe funktionieren könne.

„Dies ist das erste Mal, dass eine derartige Studie in dieser Detailtiefe durchgeführt wurde“, hebt Seniorautor Witte hervor. „Unsere Ergebnisse zeigen, dass mithilfe der richtigen Moleküle und bei sorgfältiger Präparation eine genaue Kontrolle der Grenzfläche zwischen Metall und Halbleiter möglich ist.“

Professor Dr. Gregor Witte leitet an der Philipps-Universität Marburg die Arbeitsgruppe Molekulare Festkörperphysik, der unter anderem Hauke und Widdascheck angehören.

Die Deutsche Forschungsgemeinschaft förderte die wissenschaftliche Arbeit an der Veröffentlichung finanziell durch den Sonderforschungsbereich 1083, „Struktur und Dynamik innerer Grenzflächen“.

Originalveröffentlichung: Felix Widdascheck, Alrun Aline Hauke & Gregor Witte: A Solvent-Free Solution: Vacuum-Deposited Organic Monolayers Modify Work Functions of Noble Metal Electrodes Advanced Functional Materials 2019, DOI: 10.102/adfm.201808385,
URL: https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808385

Weitere Informationen:
Ansprechpartnerin: Professor Dr. Gregor Witte,
AG Molekulare Festkörperphysik
Tel.: 06421 28-21384
E-Mail: gregor.witte@physik.uni-marburg.de

Johannes Scholten | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-marburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics