Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultra-kalte Atomwolken bringen bestehende Theorien ins Wanken

08.05.2018

Experimente mit ultra-kalten Atomen brachten an der TU Wien unerwartete Ergebnisse: Atomwolken, die miteinander gekoppelt sind, synchronisieren ihre Schwingung in Millisekunden – mit bestehenden Theorien ist das nicht erklärbar.

Wenn Atome fast auf den absoluten Nullpunkt abgekühlt werden, ändern sie ihr Verhalten deutlich. Sie können zu einem Bose-Einstein-Kondensat werden, ein ultra-kalter Materiezustand, in dem die Teilchen ihre Individualität verlieren und nur noch kollektiv beschrieben werden können, als ein einziges großes Quantenobjekt.


Der Atomchip der TU Wien

TU Wien


Marine Pigneur und Jörg Schmiedmayer

TU Wien

An der TU Wien werden Wolken aus ultra-kalten Atomen seit Jahren untersucht. Sie sind ein perfektes Modellsystem um fundamentale Fragen der Vielteilchen-Quantenphysik zu studieren. Nun ist das Forschungsteam rund um Prof. Jörg Schmiedmayer (Atominstitut) auf bemerkenswerte Resultate gestoßen, die von keiner der bisher etablierten Theorien erklärt werden können.

Wenn zwei ultra-kalte Quantengase miteinander gekoppelt werden, können sie sich spontan synchronisieren, sodass sich ihre Schwingungen nach wenigen Millisekunden perfekt aneinander angleichen. Das bedeutet, dass das bisherige Lehrbuchwissen über Bose-Einstein-Kondensate hinterfragt werden muss. Die Ergebnisse wurden nun im Fachjournal „Physical Review Letters“ veröffentlicht.

Atome in der Falle

„Wir verwenden einen speziell designten Atom-Chip um die Atome zu kühlen und ihre Eigenschaften zu manipulieren“, sagt Jörg Schmiedmayer. „Der Chip kann hunderte oder tausende Atome an einem bestimmten Ort festhalten und ihre kollektiven Eigenschaften mit magnetischen Feldern manipulieren.“

Zunächst wird eine Atomwolke auf eine Temperatur von wenigen Nanokelvin heruntergekühlt. „Dann erzeugen wir mit Hilfe des Atomchips eine Barriere, die unsere Atomwolke in zwei Teile teilt“, sagt Marine Pigneur, die Erstautorin des Papers, die in Schmiedmayers Team an ihrer Dissertation arbeitet.

„Wenn diese Barriere nicht zu hoch ist, dann können Atome immer noch von einer Seite zur anderen wechseln, mit Hilfe des quantenphysikalischen Tunneleffekts. Daher sind die beiden Atomwolken nicht völlig unabhängig voneinander, sie sind miteinander gekoppelt.“

Nach den Gesetzen der Quantenphysik kann jedes Objekt als eine Welle beschrieben werden. Für uns sind die Welleneigenschaften im Alltag nicht sichtbar, weil wir es normalerweise mit Objekten zu tun haben, die dafür viel zu groß und viel zu warm sind. Das Verhalten kalter Atome wird von diesen Welleneigenschaften allerdings stark beeinflusst.

Eine dieser Eigenschaften ist die sogenannte Phase, die sich verstehen lässt, indem man die Quantenwelle mit einer tickenden Uhr vergleicht: „Stellen wir uns zwei identische Pendeluhren vor“, sagt Jörg Schmiedmayer. „Sie können perfekt synchronisiert sein, sodass ihre Pendel beide exakt im gleichen Augenblick ihren tiefsten Punkt erreichen. Aber typischerweise wird ihre Bewegung ein bisschen aus dem Takt sein. In diesem Fall spricht man von einer Phasendifferenz zwischen den beiden Pendeln.“

Wenn die beiden Atomwolken erzeugt werden, starten sie im gleichen Takt – ihre Schwingungen sind völlig synchron, es gibt keine Phasendifferenz zwischen ihnen. Doch mit dem Atomchip können sie de-synchronisiert werden. Die Quanten-Phasendifferenz zwischen ihnen (die angibt, wie stark sie aus dem Takt geraten sind) kann mit hoher Präzision kontrolliert werden. Danach werden die beiden Atomwolken genau untersucht, um zu sehen, wie sich diese Phasendifferenz mit der Zeit ändert.

Wenn zwei klassische Pendel mit einem Gummiband gekoppelt werden, dann kann das Band etwas Energie aufnehmen, die dem System verloren geht, und die beiden Pendel schwingen nach kurzer Zeit synchron. Etwas Ähnliches geschieht mit den Atomwolken: Wenn sie gekoppelt sind, synchronisieren sie sich ganz von selbst, in bemerkenswert kurzer Zeit.

„Das klingt eigentlich ganz normal, wenn man an Pendeluhren denkt, aber nach den anerkannten Theorien über Bose-Einstein-Kondensate ist das sehr überraschend – denn bei uns gibt es eigentlich keine Energie-Dissipation“, sagt Jörg Schmiedmayer. „In einem solchen Quantensystem, das von der Umwelt völlig abgeschirmt ist und keine Energie verloren geht, würde man eigentlich abwechselnd Synchronisations- und Desynchronisationsphasen erwarten.“

Auf der Suche nach einem unbekannten Mechanismus

„Wenn wir die Atomwolken desynchronisieren, bringen wir das System aus dem Gleichgewicht“, sagt Marine Pigneur. „Die meisten Theorien bisher konnten gekoppelte Bose-Einstein-Kondensate erfolgreich beschreiben, aber sie sind ungeeignet um ein System zu beschreiben, das sich nicht in einem Gleichgewichtszustand befindet. Daher können sie die beobachtbare Synchronisation nicht erklären.“

Die Tatsache, dass der „Quantentakt“ der beiden Atomwolken nach ein paar Millisekunden völlig gleich ist, deutet darauf hin, dass über irgendeinen Mechanismus Energie aus dem System verloren geht. Nachdem das System abgeschlossen ist, kann die Energie allerdings nicht verschwinden, sondern nur übertragen werden.

„Die Kopplung, wie sie von gängigen Lehrbuch-Theorien beschrieben wird, kann Energie aber nicht so rasch und so stark übertragen, wie wir es beobachten. Entweder diese Theorien übersehen etwas – oder sie sind einfach falsch. Das bedeutet, dass unser Verständnis der Wechselwirkung zwischen den Atomen selbst modifiziert werden muss.“

Mit diesem erstaunlichen Ergebnis hofft das Forschungsteam, weitere Forschung auf diesem Gebiet anzustoßen. „Schließlich ist das Verhalten von Vielteilchen-Quantensystemen heute eines der großen ungelösten Probleme der modernen Physik“, sagt Jörg Schmiedmayer.

„Es verbindet viele ganz grundlegende Fragen – vom Zustand des frühen Universums gleich nach dem Urknall bis hin zur Frage, warum die merkwürdigen Effekte der Quantentheorie nur auf winziger Skala beobachtet werden können, während sich größere Objekte an die Regeln der klassischen Physik halten.“

Kontakt:
Prof. Jörg Schmiedmayer
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-664-605883888
Schmiedmayer@atomchip.org

Marine Pigneur, MSc
Atominstitut
Technische Universität Wien
Stadionallee 2, 1020 Wien
marine.pigneur@tuwien.ac.at

Weitere Informationen:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.173601 Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Berichte zu: Atome Atomwolke Atomwolken Bose-Einstein-Kondensate Energie Marine Pendel Schwingungen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics