Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Uhr mit zwei Zeitangaben: Wenn Quantenmechanik auf die allgemeine Relativitätstheorie trifft

19.10.2011
Die Vereinigung der Quantenmechanik mit Einsteins allgemeiner Relativitätstheorie ist eine wichtige offene Frage der modernen Physik.

Die allgemeine Relativitätstheorie, welche die Gravitation, den Raum und die Zeit beschreibt, tritt auf großen Skalen, also bei Sternen und Galaxien, zum Vorschein. Auf der anderen Seite machen sich die fragilen Quanteneffekte bei den kleinsten Teilchen bemerkbar. Deswegen ist es schwer, Effekte zu erforschen, wo beide Theorien zusammenwirken. Theoretische PhysikerInnen unter der Leitung von Èaslav Brukner der Universität Wien schlagen ein neuartiges Experiment vor, um genau dies zu tun. Die Ergebnisse erscheinen nun im Journal "Nature Communications".


In der allgemeinen Relativitätstheorie läuft die Zeit aufgrund der Deformation der Raumzeit durch massive Objekte unterschiedlich schnell an verschiedenen Orten. Eine Uhr, die in einer Quanten-Superposition zwischen zwei Orten ist, erlaubt es, Quanteninterferenzeffekte in Kombination mit der allgemeinen Relativitätstheorie zu erforschen.
(Bildrechte: Quantenoptik, Quantennanophysik, Quanteninformation, Universität Wien)

Zeit in der allgemeinen Relativitätstheorie

Eine der wichtigsten Vorhersagen von Einsteins allgemeiner Relativitätstheorie ist die Deformierung der Zeit. Die Theorie sagt voraus, dass Uhren in der Nähe eines massiven Objekts langsamer laufen, und dass sie schneller laufen, je weiter sie von der Masse entfernt sind. Dieser Effekt resultiert im sogenannten "Zwillingsparadoxon": Wenn einer von zwei identischen Zwillingen auf einer höher gelegenen Ebene lebt, so altert er schneller als der andere Zwilling. Dieser Effekt wurde in klassischen Experimenten bestätigt, jedoch nicht im Zusammenhang mit Quanteneffekten, welches das Ziel des neuartigen Experimentes sein soll.

Quanteninterferenz und Komplementarität

Die Wiener Forschungsgruppe möchte den außergewöhnlichen Quanteneffekt ausnutzen, bei dem ein Teilchen nicht mehr genau lokalisierbar ist. In der Quantenmechanik nennt man diesen Zustand "Superposition", und er ermöglicht Welleneffekte, also Interferenz, eines einzigen Teilchens. Wenn der Ort des Teilchens jedoch beobachtet wird, so geht dieser Effekt verloren: Es ist nicht möglich, Interferenzeffekte zu beobachten und gleichzeitig die Position des Teilchens zu kennen. Solch eine Verbindung zwischen Information und Interferenz ist ein Beispiel für das Prinzip der Quanten-Komplementarität, welches zuerst von Niels Bohr formuliert wurde. Das jetzt in "Nature Communications" vorgeschlagene Experiment nutzt dieses Prinzip in Verbindung mit dem "Zwillingsparadoxon" aus.

Einsteins "Zwillingsparadoxon" für ein "Quanten-Einzelkind"

Das Team an der Universität Wien beschreibt eine einzige Uhr (ein beliebiges Teilchen mit einem internen Freiheitsgrad), welche in eine Superposition von zwei Orten gebracht wird – ein Ort näher und ein Ort weiter von der Erdoberfläche entfernt. Aufgrund der allgemeinen Relativitätstheorie würde die Uhr unterschiedlich schnell an beiden Orten laufen – so wie die Zwillinge unterschiedlich altern. Da jedoch die Zeit, die durch die Uhr gemessen wird, Information darüber angibt, an welchem Ort die Uhr ist, gehen die Interferenz und die Wellennatur der Uhr verloren. "Es ist das 'Zwillings-Paradoxon' des 'quantenmechanischen Einzelkindes' und verbindet Quanteneffekte mit denen der allgemeinen Relativitätstheorie. Dies wurde noch nie zuvor in Experimenten beobachtet", sagt Magdalena Zych, Erstautorin der Publikation und Mitglied des Wiener FWF-Doktoratskollegs CoQuS. Es wäre daher das erste Experiment, welches es ermöglicht, die Zeit wie sie in der allgemeinen Relativitätstheorie beschrieben wird, in Verbindung mit der Quanten-Komplementarität zu erforschen.

Die Arbeit wurde unterstützt durch den Fonds zur Förderung der wissenschaftlichen Forschung (FWF), das Foundational Questions Institute (FQXi) und die Europäische Kommission.

Publikation:
"Quantum interferometric visibility as a witness of general relativistic proper time". M. Zych, F. Costa, I. Pikovski und C. Brukner. DOI: 10.1038/ncomms1498
Wissenschaftlicher Kontakt
Magdalena Zych, MA
Quantenoptik, Quantennanophysik, Quanteninformation
Universität Wien
Boltzmanngasse 5, 1090 Wien
T +43-1-4277-725 83
magdalena.zych@univie.ac.at
Rückfragehinweis
Petra Beckmannova
Quantenoptik, Quantennanophysik, Quanteninformation
Universität Wien
Boltzmanngasse 5, 1090 Wien
T +43-1-4277-295 56
arndt-office@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.quantum.at/
http://www.quantumfoundations.weebly.com/
http://medienportal.univie.ac.at/presse/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics