Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschendes Phänomen bei der Kristallbildung entdeckt

12.02.2016

Kügelchen von leicht unterschiedlicher Größe kristallisieren schneller – Modellexperimente mit kolloiden Kristallen helfen Computersimulationen

Winzig kleine, in Wasser verteilte Plastikkügelchen ordnen sich schneller in einer Kristallstruktur an, wenn sie von leicht unterschiedlicher Größe sind, als gleich große Kugeln. Dieses überraschende Phänomen haben Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) bei der Untersuchung von Kolloiden entdeckt.


Drei 1-2 Millimeter große Kristallite während des Wachstums: Unter dem Polarisationsmikroskop offenbart sich die ganze Schönheit dieser Objekte, während die weniger gut geordnete Schmelze dunkel bleibt. Je nach Orientierung der Kriställchen schimmern sie in anderen phantastischen Farben. Bei näherem Hinsehen sind auch die feinen Unterschiede im Kristallbau und die leicht fransige Oberfläche zu erkennen - beides typisch für eine geringe Oberflächenspannung.

Foto/©: KOMET336, Institut für Physik, JGU


Typische kolloidale Suspensionen unterschiedlicher Konzentration: Die Proben bestehen aus 68±3 Nanometer großen, negativ geladenen Kügelchen aus Polystyrol. Die Konzentration nimmt von links nach rechts zu. Aus der fast klaren Flüssigkeit wird zunächst eine rosa schimmernde, milchige Flüssigkeit und dann ein Festkörper mit vielen kleinen Kristallen. Die rote Färbung zeigt, dass der mittlere Abstand zwischen zwei Kügelchen etwa so groß ist wie eine Wellenlänge roten Lichts (610 Nanometer).

Foto/©: KOMET336, Institut für Physik, JGU

Kolloide sind Teilchen von weniger als einem tausendstel Millimeter Größe, die als Schwebstoffe fein verteilt in einem Trägermedium schwimmen. Ein klassisches Beispiel ist die Milch mit ihren kleinen Fetttröpfchen, die im Wasser schweben. Physiker nutzen solche kolloidalen Suspensionen für Modellexperimente, unter anderem zur Überprüfung von Computersimulationen.

Die Arbeitsgruppe von Univ.-Prof. Dr. Thomas Palberg am Institut für Physik beobachtet die Kristallbildung von solchen in Wasser schwebenden Plastikkügelchen mit Videomikroskopie oder anderen optischen Methoden.

Ein besonders beliebtes Modellsystem sind elektrostatisch negativ geladene Kugeln in salzarmem oder destilliertem Wasser. Bereits mit bloßem Auge lässt sich erkennen, wie die Probe bei zunehmender Konzentration der Kügelchen zunächst stark milchig wird und schließlich kleine Kristalle bildet, die in allen Regenbogenfarben schillern. Unter dem Mikroskop ist zu sehen, dass sich die Schwebeteilchen zu einer regelmäßigen Gitterstruktur angeordnet haben wie bei einem Schmuckopal.

Bei dem jetzigen Versuch haben die Physiker Suspensionen mit Kügelchen verschiedener Größe und Größenverteilung untersucht. Erstaunlicherweise konnten sie feststellen, dass die Kristallbildung durch leichte Größenunterschiede der Kugeln kontinuierlich beschleunigt wurde – und zwar bis zu einem Größenunterschied von acht Prozent.

Größere Abweichungen werden nicht toleriert, stattdessen geht die Geschwindigkeit der Kristallisation dann drastisch zurück, weil mehr Zeit für die Sortierung der Kugeln in Kristalle aus vorwiegend großen oder vorwiegend kleinen Kugeln nötig wird. „Wir waren über diesen Effekt sehr überrascht, weil wir intuitiv erwartet hätten, dass gleich große Kugeln schneller kristallisieren“, sagt Thomas Palberg zu dem Ergebnis. „Aber offenbar lassen sich ungleich große Kugeln schneller in ein Gitter packen, auch wenn es am Ende vielleicht nicht so schön aussieht.“

Oberflächenspannung zwischen Kristall und Schmelze entscheidend

Der physikalische Grund für die unerwartet schnelle Kristallisation ist eine geringere Oberflächenspannung zwischen dem Kristall und seiner umgebenden Schmelze. „Wir können zeigen, dass die Oberflächenspannung eng gekoppelt ist an die Differenz zwischen dem Ausmaß der Unordnung in der Schmelze und dem Ausmaß der Unordnung im festen Zustand“, ergänzt der Physiker.

„Natürlich ist eine Schmelze viel ungeordneter als ein Kristall. Aber gerade deswegen ist die perfekte Ordnung des Kristalls leicht durch ein paar Kügelchen abweichender Größe zu stören, während man in der Schmelze die Zunahme der Unordnung kaum bemerken würde. Der Unterschied der Unordnung und damit die Oberflächenspannung nehmen also ab, wenn leicht unterschiedliche Kugeln verwendet werden. In der Folge wird dann die Kristallbildung wesentlich einfacher und schneller.“ Dies könnte auch erklären, weshalb im Computer simulierte, gleichmäßig große Kugeln viel zu langsam kristallisieren.

Veröffentlichung:
Thomas Palberg, Patrick Wette, Dieter M. Herlach
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
Physical Review E, 3. Februar 2016
DOI: 10.1103/PhysRevE.93.022601


Weitere Informationen:
Univ.-Prof. Dr. Thomas Palberg
Physik der Kondensierten Materie (KOMET)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23638
Fax: +49 6131-39-23807
E-Mail: palberg@uni-mainz.de
http://kolloid.physik.uni-mainz.de/people01.php

Weitere Links:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022601 (Abstract)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics