Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschendes Phänomen bei der Kristallbildung entdeckt

12.02.2016

Kügelchen von leicht unterschiedlicher Größe kristallisieren schneller – Modellexperimente mit kolloiden Kristallen helfen Computersimulationen

Winzig kleine, in Wasser verteilte Plastikkügelchen ordnen sich schneller in einer Kristallstruktur an, wenn sie von leicht unterschiedlicher Größe sind, als gleich große Kugeln. Dieses überraschende Phänomen haben Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) bei der Untersuchung von Kolloiden entdeckt.


Drei 1-2 Millimeter große Kristallite während des Wachstums: Unter dem Polarisationsmikroskop offenbart sich die ganze Schönheit dieser Objekte, während die weniger gut geordnete Schmelze dunkel bleibt. Je nach Orientierung der Kriställchen schimmern sie in anderen phantastischen Farben. Bei näherem Hinsehen sind auch die feinen Unterschiede im Kristallbau und die leicht fransige Oberfläche zu erkennen - beides typisch für eine geringe Oberflächenspannung.

Foto/©: KOMET336, Institut für Physik, JGU


Typische kolloidale Suspensionen unterschiedlicher Konzentration: Die Proben bestehen aus 68±3 Nanometer großen, negativ geladenen Kügelchen aus Polystyrol. Die Konzentration nimmt von links nach rechts zu. Aus der fast klaren Flüssigkeit wird zunächst eine rosa schimmernde, milchige Flüssigkeit und dann ein Festkörper mit vielen kleinen Kristallen. Die rote Färbung zeigt, dass der mittlere Abstand zwischen zwei Kügelchen etwa so groß ist wie eine Wellenlänge roten Lichts (610 Nanometer).

Foto/©: KOMET336, Institut für Physik, JGU

Kolloide sind Teilchen von weniger als einem tausendstel Millimeter Größe, die als Schwebstoffe fein verteilt in einem Trägermedium schwimmen. Ein klassisches Beispiel ist die Milch mit ihren kleinen Fetttröpfchen, die im Wasser schweben. Physiker nutzen solche kolloidalen Suspensionen für Modellexperimente, unter anderem zur Überprüfung von Computersimulationen.

Die Arbeitsgruppe von Univ.-Prof. Dr. Thomas Palberg am Institut für Physik beobachtet die Kristallbildung von solchen in Wasser schwebenden Plastikkügelchen mit Videomikroskopie oder anderen optischen Methoden.

Ein besonders beliebtes Modellsystem sind elektrostatisch negativ geladene Kugeln in salzarmem oder destilliertem Wasser. Bereits mit bloßem Auge lässt sich erkennen, wie die Probe bei zunehmender Konzentration der Kügelchen zunächst stark milchig wird und schließlich kleine Kristalle bildet, die in allen Regenbogenfarben schillern. Unter dem Mikroskop ist zu sehen, dass sich die Schwebeteilchen zu einer regelmäßigen Gitterstruktur angeordnet haben wie bei einem Schmuckopal.

Bei dem jetzigen Versuch haben die Physiker Suspensionen mit Kügelchen verschiedener Größe und Größenverteilung untersucht. Erstaunlicherweise konnten sie feststellen, dass die Kristallbildung durch leichte Größenunterschiede der Kugeln kontinuierlich beschleunigt wurde – und zwar bis zu einem Größenunterschied von acht Prozent.

Größere Abweichungen werden nicht toleriert, stattdessen geht die Geschwindigkeit der Kristallisation dann drastisch zurück, weil mehr Zeit für die Sortierung der Kugeln in Kristalle aus vorwiegend großen oder vorwiegend kleinen Kugeln nötig wird. „Wir waren über diesen Effekt sehr überrascht, weil wir intuitiv erwartet hätten, dass gleich große Kugeln schneller kristallisieren“, sagt Thomas Palberg zu dem Ergebnis. „Aber offenbar lassen sich ungleich große Kugeln schneller in ein Gitter packen, auch wenn es am Ende vielleicht nicht so schön aussieht.“

Oberflächenspannung zwischen Kristall und Schmelze entscheidend

Der physikalische Grund für die unerwartet schnelle Kristallisation ist eine geringere Oberflächenspannung zwischen dem Kristall und seiner umgebenden Schmelze. „Wir können zeigen, dass die Oberflächenspannung eng gekoppelt ist an die Differenz zwischen dem Ausmaß der Unordnung in der Schmelze und dem Ausmaß der Unordnung im festen Zustand“, ergänzt der Physiker.

„Natürlich ist eine Schmelze viel ungeordneter als ein Kristall. Aber gerade deswegen ist die perfekte Ordnung des Kristalls leicht durch ein paar Kügelchen abweichender Größe zu stören, während man in der Schmelze die Zunahme der Unordnung kaum bemerken würde. Der Unterschied der Unordnung und damit die Oberflächenspannung nehmen also ab, wenn leicht unterschiedliche Kugeln verwendet werden. In der Folge wird dann die Kristallbildung wesentlich einfacher und schneller.“ Dies könnte auch erklären, weshalb im Computer simulierte, gleichmäßig große Kugeln viel zu langsam kristallisieren.

Veröffentlichung:
Thomas Palberg, Patrick Wette, Dieter M. Herlach
Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres
Physical Review E, 3. Februar 2016
DOI: 10.1103/PhysRevE.93.022601


Weitere Informationen:
Univ.-Prof. Dr. Thomas Palberg
Physik der Kondensierten Materie (KOMET)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23638
Fax: +49 6131-39-23807
E-Mail: palberg@uni-mainz.de
http://kolloid.physik.uni-mainz.de/people01.php

Weitere Links:
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.022601 (Abstract)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenimaging: Unsichtbares sichtbar machen
02.04.2020 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

nachricht Internationales Physiker-Team berechnet Effekt virtueller quarks in der Streuung von zwei Lichtquanten
02.04.2020 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hygienische und virenfreie Oberflächen: Smartphones schnell und sicher mit Licht desinfizieren

06.04.2020 | Materialwissenschaften

Zuwachs bei stationären Batteriespeichern

06.04.2020 | Energie und Elektrotechnik

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics