Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschender Einblick in die Welt der Atomkerne

19.09.2016

Wie fügen sich Neutronen und Protonen zu Atomkernen zusammen? Eine neue Computersimulation liefert auf diese Frage ein überraschendes Ergebnis: Wurde in der Simulation ein einziger Parameter minimal verändert, hatte das fundamentale Auswirkungen auf den Aufbau der Kerne. Unter leicht unterschiedlichen Bedingungen könnte unser Universum daher ganz anders aussehen. An der Studie waren neben der Universität Bonn das Forschungszentrum Jülich, die Ruhr-Universität Bochum und zwei amerikanischen Hochschulen beteiligt. Die Ergebnisse erscheinen heute in der Fachzeitschrift „Physical Review Letters“.

Atomkerne sind der Stoff, auf dem unsere Existenz basiert. Sie sind aus positiv geladenen Protonen und ungeladenen Neutronen aufgebaut. Doch was passiert, wenn sich diese zu Kernen verbinden? Diese Frage beschäftigt schon Generationen von Physikern.


Beim bestimmten „Mischungsverhältnis“ zwischen lokalen und nicht-lokalen Wechselwirkungen im Kern kommt es zu einem Phasenübergang von einem Gas aus Alpha-Teilchen hin zu einer nuklearen Flüssigkeit

© Grafik: Dean Lee

Wie sich die Neutronen im Kern genau anordnen, ist nämlich je nach Atom unterschiedlich: In manchen Atomen sind die Kerne aus so genannten Clustern aufgebaut. Das sind Gruppen von je zwei Protonen und Neutronen, die man auch als Alpha-Teilchen bezeichnet. In anderen Atomen lassen sich diese Alpha-Teilchen dagegen nicht beobachten. „Wir wissen bislang nicht, warum das so ist“, erklärt Prof. Dr. Ulf Meißner vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn.

Um den Vorgängen bei der Bildung der Atomkerne genauer nachzuspüren, bemühen Physiker heute Computersimulationen. Diese erfordern jedoch extrem komplexe Berechnungen. Selbst mit den schnellsten Supercomputern lässt sich heute daher nur die Entstehung sehr kleiner Kerne simulieren. Ziel der aktuellen Studie war es ursprünglich, die Rechenverfahren effizienter zu machen, um mittelfristig auch die Bindungsverhältnisse in größeren Kernen simulieren zu können.

Unerwartete Beobachtung

Wenn zwei Alpha-Teilchen in einem Atomkern zusammen kommen, beeinflussen sich beide gegenseitig – sie treten miteinander in Wechselwirkung. Wenn sich dabei die relative Position der Protonen und Neutronen in beiden Alpha-Teilchen zueinander nicht verändert, nennt man diese Wechselwirkung „lokal“. Ansonsten spricht man von einer nicht-lokalen Wechselwirkung. „Wir haben in unseren Simulationen das 'Mischungsverhältnis' zwischen lokalen und nicht-lokalen Wechselwirkungen variiert“, erklärt Prof. Meißner. „Wir haben also immer mehr lokale Wechselwirkungen beigemischt.“

Dabei zeigte sich ein unerwarteter Effekt: Ab einem bestimmten Mischungsverhältnis änderte sich der Zustand des Kerns fundamental. Bildlich gesprochen, ging der Kern von einem gasförmigen in einen flüssigen Zustand über. Im gasförmigen Zustand ist der Kern aus Alpha-Teilchen aufgebaut, entsprechend einem Bose-Einstein Gas, im flüssigen dagegen nicht. „Bei welchem Mischungsverhältnis dieser Phasenübergang stattfindet, hängt von der Größe des Kerns ab“, sagt der Erstautor der Studie, Prof. Meißners Mitarbeiter Dr. Serdar Elhatisari.

Die Bindungsverhältnisse im Kern seien also in der Natur ganz nahe an einer Instabilität, die vorher nicht beobachtet wurde, ergänzt Prof. Meißner: „Wenn man den Parameter, der die relative Stärke der lokalen zur nicht-lokalen Wechselwirkung bestimmt, nur ein kleines bisschen variiert, dann sieht unser Universum ganz anders aus. Unsere Simulationen bieten ein völlig neues Werkzeug, um die Verbindung von Kernstruktur zu den Kernkräften genauer zu verstehen.“

Die Studie wurde durch Mittel der Deutschen Forschungsgemeinschaft (SFB/TR 110), das BMBF (05P15PCFN1), der Helmholtz Gemeinschaft (JUQUEEN Supercomputer Ressourcen), des U.S. Department of Energy und der National Science Foundation der USA ermöglicht.

Publikation: Serdar Elhatisari, Ning Li, Alexander Rokash, Jose Manuel Alarcon, Dechuan Du, Nico Klein, Bing-nan Lu, Ulf-G. Meißner, Evgeny Epelbaum, Hermann Krebs, Timo A. Lähde, Dean Lee, Gautam Rupak: Nuclear binding near a quantum phase transition; Physical Review Letters

Kontakt:

Prof. Dr. Ulf-G. Meißner
Helmholtz-Institut für Strahlen- und Kernphysik
Universität Bonn
Tel. 0228/732365
E-Mail: meissner@hiskp.uni-bonn.de

Weitere Informationen:

https://arxiv.org/pdf/1602.04539v2.pdf Publikation im Internet

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics