Überraschend Sauerstoff in Kometenatmosphäre entdeckt

«Porträt» des Kometen 67P/Churyumov-Gerasimenko vom September 2014, aufgenommen mit der Bordkamera der Raumsonde Rosetta aus 28km Entfernung, als das Massenspektrometer ROSINA die Messungen vornahm. ESA/Rosetta/NAVCAM

Schon früh in der Mission des Massenspektrometers ROSINA­ – im September letzten Jahres – machten die Forschenden vom Center for Space and Habitability (CSH) der Universität Bern bei der Analyse der Kometengase eine unerwartete Entdeckung: Zwischen den erwarteten Spitzen der Schwefel- und Methanolwerte waren deutliche Spuren von Sauerstoffmolekülen (O2) zu sehen.

Es stellte sich heraus, dass O2 gar das vierthäufigste Gas in der Atmosphäre des Kometen ist – nach Wasser (H2O), Kohlenmonoxid (CO) und Kohlendioxid (CO2). Da Sauerstoff chemisch sehr reaktiv ist, wurde bisher angenommen, dass er sich im frühen Sonnensystem mit dem in grossen Mengen vorhandenen Wasserstoff zu Wasser verbunden haben muss. Dennoch waren auf dem Kometen noch Sauerstoffmoleküle vorhanden.

«Wir hätten nie gedacht, dass Sauerstoff Jahrmilliarden ‹überleben› kann, ohne sich mit anderen Stoffen zu verbinden», sagt Prof. Kathrin Altwegg, Projektleiterin des Massenspektrometers ROSINA und Ko-Autorin der Studie. Die Erkenntnisse werden nun im Fachjournal «Nature» publiziert.

Von der Erde aus unsichtbar

Molekularer Sauerstoff ist sehr schwierig mittels spektroskopischen Messungen von Teleskopen zu entdecken – was erklärt, wieso dieses Molekül nicht schon bei anderen Kometen beobachtet wurde. Es brauchte die Messung vor Ort mit dem ROSINA-Massenspektrometer auf der Rosetta-Sonde, um diese Entdeckung zu machen.

«Erstaunlich für uns war auch die Feststellung, dass das Verhältnis von Wasser zu Sauerstoff sich weder mit dem Ort auf dem Kometen noch mit der Zeit änderte – es also eine stabile Korrelation zwischen Wasser und Sauerstoff gibt», sagt Ko-Autorin Altwegg.

Uraltes Material

Im Gegensatz zu Kometen ist das Vorkommen von Sauerstoffmolekülen auf den Jupiter- und Saturnmonden bekannt. Dort wird es durch das Einschlagen hochenergetischer Teilchen vom jeweiligen Mutterplaneten erklärt, den es aber im Fall des Kometen 67P/Churyumov-Gerasimenko nicht gibt. Allerdings wird der Komet seit 4.6 Milliarden Jahren von hochenergetischen Teilchen der kosmischen Strahlung bombardiert.

Diese Teilchen können Wasser spalten, woraus unter anderem Sauerstoff, Wasserstoff und Ozon entstehen können. Allerdings dringen diese Teilchen nur wenige Meter in die Oberfläche ein. Der Komet verliert aber auf seiner Bahn um die Sonne bei jedem Umlauf zwischen einem bis zehn Metern Umfang und hat deshalb seit seiner letzten Begegnung mit Jupiter im Jahr 1959, die ihn auf die heutige Bahn gebracht hat, schon mehr als 100 Meter Umfang verloren.

Die laut den Forschenden wahrscheinlichste Erklärung ist, dass der Sauerstoff schon früh, also vor der Bildung des Sonnensystems, entstand. Dabei seien hochenergetische Teilchen auf Eiskörner in den kalten und dichten Geburtsstätten der Sterne, den sogenannten dunklen Molekülwolken, getroffen und hätten Wassermoleküle gespalten, was zu Wasserstoff- und Sauerstoffmolekülen geführt hätte. Der Sauerstoff sei dann im frühen Sonnensystem nicht weiter «verarbeitet» worden.

Die Sauerstoff-Messungen zeigen, dass mindestens ein grosser Teil des Kometenmaterials älter ist als unser Sonnensystem und die Zusammensetzung dabei typisch ist für dunkle Molekülwolken, aus denen dann solare Nebel und später Planetensysteme entstehen. «Dieser Hinweis auf Sauerstoff als uraltes Material wird wahrscheinlich einige theoretische Modelle über die Bildung des Sonnensystems über den Haufen werfen», sagt Altwegg.

Publikation:
A. Bieler, K. Altwegg, H. Balsiger, A. Bar-Nun, J.-J. Berthelier, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, E. F. van Dishoeck, B. Fiethe, S. A. Fuselier, S. Gasc, T. I. Gombosi, K. C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. Le Roy, U. Mall, R. Maggiolo, B. Marty, O. Mousis, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, J. H. Waite, C. Walsh & P. Wurz: Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko, Nature, in press

Auskünfte: Prof. Dr. Kathrin Altwegg
Center for Space and Habitability, Universität Bern
altwegg@space.unibe.ch
Tel. +41 31 631 44 20

http://www.unibe.ch/aktuell/medien/media_relations/medienmitteilungen/2015/index…

Media Contact

Nathalie Matter Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer