Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Kristall

01.03.2013
Ultrakurzzeitphysiker beobachten, welche Auswirkungen Elektronenverschiebungen im Kristall auf den gesamten Festkörper haben.

Wenn auf einen Festkörper intensives Licht trifft, dann kommt sein atomares Innenleben in Bewegung. In Titanoxid, einem Halbleiter, beobachtete nun ein Team von Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching (MPQ), der Technischen Universität München (TUM), dem Fritz-Haber-Institut in Berlin (FHI) und der Universität Kassel wie sich die Anordnung von Elektronen und Atomkernen verändert, wenn starkes Laserlicht auf den Titandioxid-Kristall trifft.


Bild 1: Ein ultravioletter Lichtpuls trifft einen Titandioxid-Festkörper. Das Licht löst Verschiebungen von locker an Atome gebundenen Elektronen aus, wodurch sich die Ruheposition der Atome im Kristallgitter verschiebt.
©Thorsten Naeser


Bild 2: Schematische Darstellung des Experiments. Ein extrem kurzer ultravioletter Lichtpuls von 5 Femtosekunden Dauer erzeugt heiße, angeregte Elektronen in Titandioxid. Dadurch ändert sich die räumliche Verteilung der Elektronen innerhalb des Gitters, was eine Verschiebung der Gitter-Potentialflächen, d.h. der Ruheposition der Atome, bewirkt (mittleres Bild). Die anschließende Abkühlung der Elektronen, die nach etwa 20 Femtosekunden abgeschlossen ist, verstärkt diesen Effekt noch weiter (rechtes Bild). Diese Kombination übt eine Kraft auf die Sauerstoffatome aus, die eine kohärente Schwingung des Kristalls bewirkt.
©Alexander Paarmann

Die Forscher wiesen nach, dass selbst kleine Veränderungen in der Elektronenverteilung, ausgelöst durch eine Anregung mit ultrakurzen Laserpulsen, eine große Wirkung auf das gesamte Kristallgitter haben können.

Das Wissen um die Wechselwirkung zwischen Licht und Materie in atomaren Dimensionen gleicht einer Landkarte mit vielen weißen Flecken. Unzählige Phänomene harren hier ihrer Entdeckung. Einen neuen, bisher unbekannten Aspekt des Licht-Materie-Wechselspiels in Kristallen hat ein Team aus Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching, der Technischen Universität München, dem Fritz-Haber-Institut in Berlin und der Universität Kassel mit Laserpulsen von wenigen Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde) untersucht.

Die Physiker schickten einen intensiven, ultravioletten Laserpuls mit einer Dauer von weniger als fünf Femtosekunden auf den Titandioxid-Kristall (bestehend aus Titan und Sauerstoffatomen). Dadurch gerieten die Valenzelektronen der Atome in Bewegung und erhitzten sich auf mehrere Tausend Grad Celsius. Valenzelektronen sind locker an Atome gebundene Elektronen, sie treten in starke Wechselwirkung miteinander und bilden dadurch eine Art Klebstoff, der die Atomrümpfe in einem Kristallgitter zusammenhält. Eigenschaften eines Materials, wie etwa die elektrische Leitfähigkeit, die optischen Eigenschaften oder die Gitterstruktur, werden durch das permanente Wechselspiel zwischen der Position der Atomrümpfe und deren Valenzelektronen bestimmt.

Wenige Femtosekunden nach dem ersten Laserpuls schickten die Physiker einen zweiten, etwas schwächeren Puls auf den Kristall. Dieser wurde an der Oberfläche reflektiert und gab den Forschern dadurch Auskunft über die Veränderungen, die der erste Puls im Kristall hervorgerufen hatte: Das starke Licht des ersten Pulses erhitzte nicht nur die Valenzelektronen, es veränderte auch deren Position im Atomgitter. Die Elektronendichte wurde in der Umgebung der Sauerstoffkerne verringert und in der Umgebung der Titankerne erhöht. Die Verschiebung des Gleichgewichts bedeutete wiederum, dass sich die Ruheposition der Sauerstoffatome relativ zur Ruheposition der Titanatome verschob. Letztendlich begannen die Sauerstoff-Atomrümpfe zu schwingen. Dieser Effekt lässt sich mit einer Kugel (Sauerstoffatom) in einer Schale (gesamter Kristall) veranschaulichen. Im Grundzustand befindet sich die Kugel in der Mitte am tiefsten Punkt der Schale. Die Anregung der Elektronen bewirkt eine schlagartige Verschiebung der Schale, die Kugel beginnt um die neue Gleichgewichtslage zu oszillieren.

Bei den Experimenten beobachteten die Physiker einen überraschenden Effekt: Nach der Lichtanregung kühlten die Elektronen innerhalb von rund 20 Femtosekunden auf Raumtemperatur ab. Der Kristall wurde während dieser kurzen Zeit nur minimal erwärmt. Die räumliche Verteilung der Valenzelektronen jedoch veränderte sich markant. Als Konsequenz daraus verschob sich auch die Ruheposition der Atome im Kristallgitter noch um ein ganzes Stück weiter.Eine solche Abhängigkeit der Kristallstruktur von der Temperatur angeregter Elektronen war schon lange theoretisch vorhergesagt. Nun gelang der experimentelle Nachweis. Das Ergebnis zeigt, dass der Gleichgewichtszustand des Festkörpers auch auf kleine Änderungen der Elektronenverteilung extrem stark reagiert. Dieses Wissen könnte später beim Design neuer Materialien von großem Nutzen sein. [Thorsten Naeser]

Originalpublikation:

Elisabeth M. Bothschafter, Alexander Paarmann, Eeuwe S. Zijlstra, Nicholas Karpowicz, Martin E. Garcia, Reinhard Kienberger und Ralph Ernstorfer

“Ultrafast evolution of the excited-state potential energy surface of TiO2 single crystals induced by carrier cooling”
Phys. Rev. Lett. 110, 067402 (2013).

Weitere Informationen erhalten Sie von:

Elisabeth Bothschafter
Labor für Attosekundenphysik
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Tel: +49 (0) 89 / 32 905 – 236
E-Mail: elisabeth.bothschafter@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Massereiche Sternembryos wachsen in Schüben
14.07.2020 | Max-Planck-Institut für Astronomie

nachricht Komet C/2020 F3 (NEOWISE) mit bloßem Auge am Abendhimmel sichtbar
13.07.2020 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hammer-on – wie man Atome schneller schwingen lässt

Schwingungen von Atomen in einem Kristall des Halbleiters Galliumarsenid (GaAs) lassen sich durch einen optisch erzeugten Strom impulsiv zu höherer Frequenz verschieben. Die mit dem Strom verknüpfte Ladungsverschiebung zwischen Gallium- und Arsen-Atomen wirkt über elektrische Wechselwirkungen zurück auf die Schwingungen.

Hammer-on ist eine von vielen Rockmusikern benutzte Technik, um mit der Gitarre schnelle Tonfolgen zu spielen und zu verbinden. Dabei wird eine schwingende...

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wind trägt Mikroplastik in die Arktis

14.07.2020 | Ökologie Umwelt- Naturschutz

Nanoelektronik lernt wie das Gehirn

14.07.2020 | Informationstechnologie

Anwendungslabor Industrie 4.0 der THD: Smarte Lösungen für die Unikatproduktion

14.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics