Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Kristall

01.03.2013
Ultrakurzzeitphysiker beobachten, welche Auswirkungen Elektronenverschiebungen im Kristall auf den gesamten Festkörper haben.

Wenn auf einen Festkörper intensives Licht trifft, dann kommt sein atomares Innenleben in Bewegung. In Titanoxid, einem Halbleiter, beobachtete nun ein Team von Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching (MPQ), der Technischen Universität München (TUM), dem Fritz-Haber-Institut in Berlin (FHI) und der Universität Kassel wie sich die Anordnung von Elektronen und Atomkernen verändert, wenn starkes Laserlicht auf den Titandioxid-Kristall trifft.


Bild 1: Ein ultravioletter Lichtpuls trifft einen Titandioxid-Festkörper. Das Licht löst Verschiebungen von locker an Atome gebundenen Elektronen aus, wodurch sich die Ruheposition der Atome im Kristallgitter verschiebt.
©Thorsten Naeser


Bild 2: Schematische Darstellung des Experiments. Ein extrem kurzer ultravioletter Lichtpuls von 5 Femtosekunden Dauer erzeugt heiße, angeregte Elektronen in Titandioxid. Dadurch ändert sich die räumliche Verteilung der Elektronen innerhalb des Gitters, was eine Verschiebung der Gitter-Potentialflächen, d.h. der Ruheposition der Atome, bewirkt (mittleres Bild). Die anschließende Abkühlung der Elektronen, die nach etwa 20 Femtosekunden abgeschlossen ist, verstärkt diesen Effekt noch weiter (rechtes Bild). Diese Kombination übt eine Kraft auf die Sauerstoffatome aus, die eine kohärente Schwingung des Kristalls bewirkt.
©Alexander Paarmann

Die Forscher wiesen nach, dass selbst kleine Veränderungen in der Elektronenverteilung, ausgelöst durch eine Anregung mit ultrakurzen Laserpulsen, eine große Wirkung auf das gesamte Kristallgitter haben können.

Das Wissen um die Wechselwirkung zwischen Licht und Materie in atomaren Dimensionen gleicht einer Landkarte mit vielen weißen Flecken. Unzählige Phänomene harren hier ihrer Entdeckung. Einen neuen, bisher unbekannten Aspekt des Licht-Materie-Wechselspiels in Kristallen hat ein Team aus Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching, der Technischen Universität München, dem Fritz-Haber-Institut in Berlin und der Universität Kassel mit Laserpulsen von wenigen Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde) untersucht.

Die Physiker schickten einen intensiven, ultravioletten Laserpuls mit einer Dauer von weniger als fünf Femtosekunden auf den Titandioxid-Kristall (bestehend aus Titan und Sauerstoffatomen). Dadurch gerieten die Valenzelektronen der Atome in Bewegung und erhitzten sich auf mehrere Tausend Grad Celsius. Valenzelektronen sind locker an Atome gebundene Elektronen, sie treten in starke Wechselwirkung miteinander und bilden dadurch eine Art Klebstoff, der die Atomrümpfe in einem Kristallgitter zusammenhält. Eigenschaften eines Materials, wie etwa die elektrische Leitfähigkeit, die optischen Eigenschaften oder die Gitterstruktur, werden durch das permanente Wechselspiel zwischen der Position der Atomrümpfe und deren Valenzelektronen bestimmt.

Wenige Femtosekunden nach dem ersten Laserpuls schickten die Physiker einen zweiten, etwas schwächeren Puls auf den Kristall. Dieser wurde an der Oberfläche reflektiert und gab den Forschern dadurch Auskunft über die Veränderungen, die der erste Puls im Kristall hervorgerufen hatte: Das starke Licht des ersten Pulses erhitzte nicht nur die Valenzelektronen, es veränderte auch deren Position im Atomgitter. Die Elektronendichte wurde in der Umgebung der Sauerstoffkerne verringert und in der Umgebung der Titankerne erhöht. Die Verschiebung des Gleichgewichts bedeutete wiederum, dass sich die Ruheposition der Sauerstoffatome relativ zur Ruheposition der Titanatome verschob. Letztendlich begannen die Sauerstoff-Atomrümpfe zu schwingen. Dieser Effekt lässt sich mit einer Kugel (Sauerstoffatom) in einer Schale (gesamter Kristall) veranschaulichen. Im Grundzustand befindet sich die Kugel in der Mitte am tiefsten Punkt der Schale. Die Anregung der Elektronen bewirkt eine schlagartige Verschiebung der Schale, die Kugel beginnt um die neue Gleichgewichtslage zu oszillieren.

Bei den Experimenten beobachteten die Physiker einen überraschenden Effekt: Nach der Lichtanregung kühlten die Elektronen innerhalb von rund 20 Femtosekunden auf Raumtemperatur ab. Der Kristall wurde während dieser kurzen Zeit nur minimal erwärmt. Die räumliche Verteilung der Valenzelektronen jedoch veränderte sich markant. Als Konsequenz daraus verschob sich auch die Ruheposition der Atome im Kristallgitter noch um ein ganzes Stück weiter.Eine solche Abhängigkeit der Kristallstruktur von der Temperatur angeregter Elektronen war schon lange theoretisch vorhergesagt. Nun gelang der experimentelle Nachweis. Das Ergebnis zeigt, dass der Gleichgewichtszustand des Festkörpers auch auf kleine Änderungen der Elektronenverteilung extrem stark reagiert. Dieses Wissen könnte später beim Design neuer Materialien von großem Nutzen sein. [Thorsten Naeser]

Originalpublikation:

Elisabeth M. Bothschafter, Alexander Paarmann, Eeuwe S. Zijlstra, Nicholas Karpowicz, Martin E. Garcia, Reinhard Kienberger und Ralph Ernstorfer

“Ultrafast evolution of the excited-state potential energy surface of TiO2 single crystals induced by carrier cooling”
Phys. Rev. Lett. 110, 067402 (2013).

Weitere Informationen erhalten Sie von:

Elisabeth Bothschafter
Labor für Attosekundenphysik
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Tel: +49 (0) 89 / 32 905 – 236
E-Mail: elisabeth.bothschafter@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Fliegende optische Katzen für die Quantenkommunikation
16.01.2019 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Roter Riesenvollmond in den Morgenstunden des 21. Januar

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg - Frühaufsteher sind diesmal im Vorteil: Wer am Morgen des 21. Januar 2019 vor 6:45 Uhr einen Blick an den Himmel wirft, kann eine totale Mondfinsternis bestaunen. Dann leuchtet der sonst so strahlende Vollmond zwischen den Sternbildern Zwillingen und Krebs glutrot.

Um das Finsternis-Spektakel in seiner gesamten Länge zu verfolgen, muss man allerdings sehr früh aus dem Bett: Kurz nach 4:30 Uhr beginnt der Mond sich langsam...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

Unsere digitale Gesellschaft im Jahr 2040

16.01.2019 | Veranstaltungen

Superbeschleuniger im Fokus

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Methode zur Synthese komplexer Moleküle

17.01.2019 | Biowissenschaften Chemie

Bessere Immuntherapie bei Hepatitis B

17.01.2019 | Biowissenschaften Chemie

So schnell erwärmen sich die Dauerfrostböden der Welt

16.01.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics