Turbulenzen im Griff

Turbulente Strömungen sind Energiefresser. Ganz gleich ob Öl durch eine Pipeline oder Wasser durch ein städtisches Versorgungsrohr gepumpt wird – die turbulenten Verwirbelungen verschlingen oft mehr als zehnmal so viel Energie wie eine ruhige Strömung derselben Geschwindigkeit.

Wissenschaftlern vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) in Göttingen und der Harvard University in den USA ist es nun gelungen, bei niedrigen Geschwindigkeiten solche Turbulenzen gezielt zu beenden. Das Besondere: Das neue Verfahren benötigt so wenig Energie, dass sich erstmals unterm Strich Energie einsparen lässt. (Science, 19. März 2010)

Gluckernd und sprudelnd wie ein Gebirgsbach bahnen sich turbulente Strömungen ihren Weg. Ein Teil der Energie, welche die Strömung antreibt, verliert sich dabei in Wirbeln und Strudeln. Ganz anders sieht dies bei einer ruhigen, laminaren Strömung aus. Hier ist allein die Reibung für Energieverluste verantwortlich. „Turbulente Strömungen gezielt zu beruhigen, ist deshalb für viele industrielle Anwendungen von großem Interesse“, erklärt Björn Hof vom Max-Planck-Institut für Dynamik und Selbstorganisation.

In ihren Experimenten wandten sich die Forscher zunächst einem Spezialfall zu: In einer zwölf Meter langen Glasröhre mit einem Durchmesser von nur drei Zentimetern erzeugten sie einen turbulenten Wirbel, der sich mit der ansonsten laminaren Wasserströmung stromabwärts bewegt. Winzige Teilchen im Wasser, die ein Laser hell aufleuchten ließ, erlaubten es, die Bewegung des Wassers genau zu verfolgen. Dabei zeigte sich, dass die Geschwindigkeitsverteilungen in den turbulenten und laminaren Abschnitten der Strömung sehr verschieden sind: Während die laminare Strömung am Röhrenrand langsam und in der Mitte sehr schnell fließt, ist die turbulente Strömung auch am Rand vergleichsweise schnell unterwegs.

„Um den turbulenten Wirbel zu zerstören, ist vor allem sein hinterer Grenzbereich zur laminaren Strömung entscheidend“, erklärt Hof. „Denn an dieser Stelle entstehen die Verwirbelungen, die die Turbulenz antreibt.“ In Computersimulationen veränderten die Forscher über einen kurzen Zeitraum an dieser Stelle die Geschwindigkeitsverteilung: In der Mitte des Glasrohrs bremsten sie die Strömung ab und beschleunigten sie am Rand, wobei die Durchflussrate konstant blieb. Auf diese Weise steht in der Mitte des Rohrs nicht mehr genug Energie zur Verfügung, um die Verwirbelungen effektiv „anzuschieben“. Das Ergebnis: Die turbulente Störung zerfällt – und bleibt verschwunden.

Doch wie lässt sich im Experiment die Strömung auf dieselbe Weise manipulieren? Die Lösung des Problems hört sich zunächst paradox an. Denn die Wissenschaftler erweiterten das Glasrohr um eine Art „Kontrollpunkt“, an der sie in regelmäßiger Abfolge gezielt zusätzliche Wirbel erzeugten. Der Trick: Folgen diese Wirbel dicht genug aufeinander, beeinflusst der nachfolgende Wirbel mit seiner turbulenten Geschwindigkeitsverteilung den hinteren Grenzbereich seines Vorgängers ähnlich wie in der Computersimulation: Die Flussgeschwindigkeit in der Mitte des Rohrs nimmt ab und der Vorgängerwirbel zerfällt. Am Kontrollpunkt entsteht somit eine Kette von Wirbeln, von denen der nachfolgende stets seinem Vorgänger die nötige Energie raubt. Wirbel, die weiter stromaufwärts durch andere Einflüsse entstehen, werden an der Kontrollstelle auf diese Weise ebenfalls abgefangen. Jenseits der Kontrollstelle ist die Strömung somit vollständig laminar.

Die Situation im Glasrohr ist somit vergleichbar mit einer Regatta, bei der an einer bestimmten Stelle – der Kontrollstelle – ständig neue Segelboote in das Rennen gehen. Schließlich liegen die Boote so dicht hintereinander, dass der jeweilige Hintermann dem Vordermann den Wind aus den Segeln nimmt und das Rennen komplett zu Stillstand kommt. Auf diese Weise bleibt die Strecke jenseits des Kontrollpunktes frei von Booten.

„Weil unser Verfahren nur an einer Stelle ansetzt, benötigt es wenig Energie“, so Hof. Die Forscher setzen nur ein Fünftel der Energie ein, die sie insgesamt einsparen konnten. In früheren Experimenten hatten die Göttinger Forscher bereits gezeigt, dass bei moderaten Strömungsgeschwindigkeiten mit der Zeit jede Turbulenz auch ohne äußeres Zutun zerfällt. Allerdings kann das oft viele Jahre dauern. „Da im Prinzip nur der laminare Zustand stabil ist, genügt ein kleiner „Schubs“, um die Strömung gezielt zu entwirbeln“, so Hof. In zukünftigen Experimenten wollen die Forscher ihre Methode nun auf ausgedehnte Turbulenzen erweitern.

Media Contact

Dr. Birgit Krummheuer Max-Planck-Institut

Weitere Informationen:

http://www.ds.mpg.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer