Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tübinger Forschungsgruppe baut winziges gekoppeltes optisches Pendel

06.08.2015

Plasmonenresonanz von Goldstäbchen lässt sich auf den Nanometer genau stimmen – Künftiger Anwendungsbereich in der Mikroskopie und bei ultra-schnellen Computern

Forschern aus der Arbeitsgruppe von Professor Alfred Meixner und PD Dr. Marc Brecht vom Institut für Physikalische und Theoretische Chemie der Universität Tübingen ist es gelungen, einen ultrakleinen, extrem präzise durchstimmbaren optischen Schalter von nur wenigen Hundert Nanometer Größe zu bauen – ein Nanometer entspricht einem Millionstel Millimeter.


Schematische Darstellung des Experiments mit dem Resonator und dem Goldstäbchen. Der Spiegelab-stand ist in etwa halb so lang wie die Wellenlänge des Lichts (/2). Rechts: Messungen der optischen Eigenschaf-ten des Systems (hier in Form von Spektren) bei Bestrahlen mit einem Laser zur Anregung der Plasmonen-schwingung im Goldstäbchen (beige-farbene Kurven) und nach Bestrahlen mit weißem Licht zur Bestimmung der Resonanzwellenlänge des Hohlrau-mes je nach eingestelltem Spiegelab-stand. Die roten Kurven zeigen die Emissions-Spektren des gekoppelten Systems. Abbildung: Alexander Kon-rad/Universität Tübingen

Der experimentelle Aufbau beruht auf einem Prinzip, das als gekoppeltes optisches Pendel beschrieben werden kann. Die verbundenen Pendel bestehen aus einem nur 40 Nanometer langen Goldstäbchen und einem stimmbaren optischen Mikroresonator. Solch winzige Schalter könnten in der Mikroskopie Anwendung finden oder auch in schnellen, dabei jedoch sehr kleinen Computern. Die Forschungsergebnisse wurden in der aktuellen Ausgabe der Nano Letters veröffentlicht.

Werden Goldstäbchen dieser geringen Größe mit rotem Licht beleuchtet, können ihre Leitungselektronen kollektiv zum Schwingen angeregt werden und so für kurze Zeit die Energie des Lichts speichern. Man spricht bei diesem Phänomen von Plasmonenschwingungen. Gleichzeitig wird dadurch ein starkes elektromagnetisches Wechselfeld in unmittelbarer Nähe des Goldstäbchens erzeugt, wodurch es seine Energie wieder abstrahlt. Die Resonanzfrequenz dieser Schwingungen wird durch die Größe und Form der Goldpartikel bestimmt.

„Das Wechselfeld des Goldpartikels ist somit unser erstes optisches Pendel“, erklärt Alfred Meixner. Seine Schwingungsfrequenz lasse sich jedoch nur indirekt, beispielsweise über elektromagnetische Felder wie etwa sichtbares Licht verändern, was bisher nur sehr ungenau bewerkstelligt werden könne.

Das zweite optische Pendel im Experiment der Forscher ist ein sogenannter optischer Mikroresonator. Hierbei wird durch zwei parallel angeordnete Spiegel ein Hohlraum gebildet, der in der Lage ist, eingestrahltes Licht für kurze Zeit einzusperren. Ist der Abstand der Spiegel so eingestellt, dass sichtbares Licht eine stehende Welle zwischen den Spiegeln ausbilden kann, dann entsteht im Hohlraum ein elektromagnetisches Wechselfeld einer bestimmten und präzise einstellbaren Frequenz. „Dieser Abstand ist unter anderem bei der halben Wellenlänge des Lichts erreicht und liegt somit im Bereich von wenigen hundert Nanometern“, erklärt Marc Brecht. „Wir haben hier in Tübingen einen verlässlichen, reproduzierbaren und einfachen Aufbau entwickelt, mit dem wir den Spiegelabstand bis auf den Nanometer genau einstellen können.“

Im Experiment erhielten die Forscher durch Veränderung des Abstands beziehungsweise die Wellenlänge im Resonator entsprechend eine Abstrahlung von Licht variierender Wellenlänge von dem Goldstäbchen. „Die im Gesamtsystem gespeicherte Energie wird abwechselnd zwischen der Plasmonenschwingung im Goldstäbchen und der stehenden Welle im Resonator ausgetauscht“, sagt Brecht. „Die Systeme sind stark gekoppelt.“

Je ähnlicher sich die Frequenzen dieser beiden Pendel sind, umso stärker wird der Effekt. „Die Stärke der Kopplung zwischen Mikroresonator und Plasmon reicht aus, um die optischen Eigenschaften des Goldstäbchens gezielt zu verändern. Das gelingt uns einfach dadurch, dass wir den Spiegelabstand in Namometerschritten vergrößern oder verkleinern“, setzt Meixner hinzu.

Bisher war es nicht möglich, die optischen Eigenschaften der Plasmonenschwingungen von nanoskopischen Goldpartikeln allein durch ihre optische Umgebung zu verändern. „In immer größerem Maße wird eine Verkleinerung von Bauelementen zum optischen Schalten und Übertragen von schnellen Signalen gefordert, wie wir sie heute schon in Glasfasernetzen nutzen“, sagt der Wissenschaftler. Miniaturisierte Elemente, die mit optischen Feldern schaltbar sind, könnten in naher Zukunft beispielsweise in ultra-schnellen Computern Anwendung finden. Aber auch das sich rasant entwickelnde Feld der Mikrobiologie sei angewiesen auf kleinste optische Sensoren, die Auskunft über fundamentale Eigenschaften der mikroskopischen und nanoskopischen Bausteine der belebten Natur geben.

Originalveröffentlichung:
Alexander Konrad, Andreas M. Kern, Marc Brecht, and Alfred J. Meixner: Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry–Pérot Resonator. Nano Letters, Vol 15 (7), 2015, DOI 10.1021/acs.nanolett.5b00766

Kontakt:
Prof. Dr. Alfred Meixner
Universität Tübingen
Institut für Physikalische und Theoretische Chemie
Telefon +49 7071 29-76903
alfred.meixner[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wieso Radium-Monofluorid den Blick ins Universum fundamental verändern kann
28.05.2020 | Universität Kassel

nachricht Verlustfreie Stromleitung an den Kanten
25.05.2020 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics