Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Wien entwickelt Licht-Transistor

02.07.2013
Die Schwingungsrichtung von Lichtstrahlen kann an der TU Wien gedreht werden – einfach durch Anlegen einer elektrischen Spannung an ein spezielles Material. So lässt sich ein Transistor bauen, der nicht mit Strom, sondern mit Licht funktioniert.

Dass Licht in unterschiedliche Richtungen schwingen kann, erlebt man im 3D-Kino: Dort lässt jedes der Gläser nur Licht einer bestimmten Schwingungsrichtung durch. Die Polarisationsrichtung von Licht gezielt zu drehen ohne dass dabei ein großer Teil des Lichts verschluckt wird, ist allerdings schwierig.


Die Schwingungsrichtung einer Lichtwelle ändert sich, wenn sie durch eine dünne Materialschicht geschickt wird. TU Wien

An der TU Wien gelang dieses Kunststück nun, und zwar mit einer technologisch ganz besonders wichtigen Art von Licht - der Terahertz-Strahlung. Ein elektrisches Feld, angelegt an einer hauchdünnen Materialschicht, kann die Polarisation des Strahls beliebig drehen. So entsteht ein effizienter, miniaturisierbarer Transistor für Licht, den man für den Aufbau optischer Computer verwenden könnte.

Gedrehtes Licht – der Faraday-Effekt

Gewisse Materialien haben die Eigenschaft, die Schwingungsrichtung von Licht zu drehen, wenn sie einem Magnetfeld ausgesetzt werden – man spricht vom Faraday-Effekt. Normalerweise ist dieser Effekt aber winzig klein. Schon vor zwei Jahren gelang es Prof. Andrei Pimenov und seinem Team vom Institut für Festkörperphysik der TU Wien gemeinsam mit einer Forschungsgruppe der Universität Würzburg, einen riesengroßen Faraday-Effekt zu erzielen, indem sie das Licht durch spezielle Quecksilber-Tellurid-Plättchen schickten und ein Magnetfeld anlegten.

Allerdings konnte der Effekt damals nur über eine äußere magnetische Spule gesteuert werden, womit große technologische Nachteile verbunden sind. „Verwendet man einen Elektromagneten, um den Effekt zu steuern, benötigt man sehr starke Ströme“, erklärt Andrei Pimenov. Nun gelang es, die Drehung von Terahertz-Strahlen ganz einfach durch ein Anlegen einer elektrischer Spannung von weniger als einem Volt zu steuern. Dadurch wird das System viel einfacher und schneller.

Dafür, dass sich die Polarisation überhaupt dreht, ist nach wie vor ein Magnetfeld verantwortlich. Doch die Stärke des Effektes wird nicht mehr durch die Stärke des Magnetfeldes bestimmt, sondern durch die Anzahl der Elektronen, die an dem Prozess beteiligt sind – und diese Anzahl lässt sich ganz einfach durch elektrische Spannung regulieren. Daher genügt nun ein Permanentmagnet und eine Spannungsquelle, die technisch vergleichsweise einfach zu handhaben ist.

Terahertz-Strahlung

Das Licht, das für die Experimente verwendet wird, ist nicht sichtbar: Es handelt sich um Terahertz-Strahlung mit einer Wellenlänge in der Größenordnung von einem Millimeter. „Die Frequenz dieser Strahlung entspricht der Taktfrequenz, die vielleicht die übernächste Generation von Computern erreichen wird“, meint Pimenov. „Die Bauteile heutiger Computer, in denen Information nur in Form von elektrischen Strömen weitergegeben wird, können kaum noch grundlegend verbessert werden. Die Ströme durch Licht zu ersetzen würde ganz neue Möglichkeiten bringen.“ Doch nicht nur für hypothetische neue Computer ist es wichtig, durch den neu entwickelten Licht-Dreh-Mechanismus Strahlen ganz gezielt kontrollieren zu können. Terahertzstrahlung wird heute für viele Zwecke verwendet, etwa auch für bildgebende Verfahren in der Sicherheitstechnik am Flughafen.
Optischer Transistor

Schickt man Licht durch einen Polarisationsfilter, kann es je nach Polarisationsrichtung durchgelassen oder abgeblockt werden. Die Drehung des Lichtstrahls – und damit die angelegte elektrische Spannung – entscheidet also, ob ein Lichtsignal gesendet oder blockiert wird. „Das ist genau das Prinzip eines Transistors“, erklärt Pimenov: „Das Anlegen einer äußeren Spannung entscheidet darüber, ob Strom fließt oder nicht – und in unserem Fall entscheidet die Spannung eben, ob das Licht ankommt oder nicht.“ Die neue Erfindung ist somit die optische Entsprechung eines elektrischen Transistors.

Rückfragehinweis:
Prof. Andrei Pimenov
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at
Weitere Informationen:
http://apl.aip.org/resource/1/applab/v102/i24/p241902_s1
http://Originalpublikation in "Applied Physics Letters"
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/licht_transistor/

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics