TU-Forscher erfolgreich – Magnetismus von Nanopartikeln

Um Speicheranforderungen von Festplatten in der Zukunft zu genügen, müssen die magnetischen Speichereinheiten immer kleiner werden. Die Strukturen, die heutzutage bereits erreicht werden, betragen ca. 40 Nanometer für ein Bit („1“ oder „0“) als kleinste zu speichernde Einheit.

Diese 40 Nanometer entsprechen in etwa einem tausendstel der Dicke eines dünnen Haars. Dies bedeutet aber immer noch, dass über zwei Millionen Atome für die Speicherung eines Bits notwendig sind. Möchte man mehr Information auf kleineren Strukturen speichern, müssen die Speichereinheiten noch kleiner werden, was Probleme mit sich bringt.

So wird bei kleineren Strukturen die magnetische Information schwächer, sie geht also schneller verloren. Durch Wechselwirkungen mit der Oberfläche und benachbarten Teilchen können zusätzlich die Speicher ihre magnetischen Eigenschaften verlieren.

Einer Forschungsgruppe aus der Physikalischen Chemie an der TU Kaiserslautern und im Transregio-Sonderforschungsbereich „3MET“ in Zusammenarbeit mit einer Gruppe am BESSY in Berlin ist es gelungen, magnetische Momente von kleinsten Teilchen (ca. 20 Atome!) unabhängig von der Umgebung in der Gasphase zu bestimmen. Darüber wurde in der Zeitschrift Physical Review Letters (2011, 107, 233401) und dazu in einem Brennpunkt-Artikel in der Zeitschrift Physik Journal (2012, 11, 22-23) vor kurzem berichtet.

Den Forschern gelang es durch XMCD Messungen sowohl das magnetische Spinmoment, als auch das Bahnmoment unabhängig voneinander zu bestimmen. Das Bahnmoment wird durch die Bewegung der Elektronen verursacht und ist damit von der Struktur des Teilchens abhängig. Eine Optimierung der magnetischen Eigenschaften durch die Veränderung der Struktur kann nun an diesen kleinsten Teilchen erfolgen.

Durch eine genaue Kenntnis der magnetischen Eigenschaften des Teilchens lassen sich nun magnetischen Eigenschaften der Teilchen selbst und in Umgebung mit Oberflächen, bzw. mit anderen Teilchen studieren. Dadurch wird es ermöglicht, neue Festplatten mit 1.000fach höheren Speicherdichten gezielt zu entwickeln.

Weitere Informationen zum Transregio-SFB 3MET unter http://www.uni-kl.de/3met

Kontakt:
Dr. Marc Prosenc, Tel.: 0631/205-5185, E-Mail: prosenc@chemie.uni-kl.de

Media Contact

Thomas Jung idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer