Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trotz Trägheit in Aktion beobachtet

04.02.2016

Mit Hilfe der Erzeugung der ersten optischen Attosekundenpulse bestimmten Wissenschaftler aus dem Labor für Attosekundenphysik die Zeitspanne, die Elektronen in Atomen benötigen, um auf die elektromagnetischen Kräfte des Lichtes zu reagieren.

Im Wettlauf um immer schnellere Elektronik könnte Licht eine wichtige Rolle spielen. So ver-folgen Physiker z.B. das Ziel, mit kurzen Lichtpulsen einer präzise kontrollierten Wellenform elektrische Ströme in Schaltkreisen mit Lichtfrequenzen zu steuern.


Optische Attosekundenblitze fangen die Bewegung träger Elektronen ein.

Graphik: Christian Hackenberger

Aber werden die Elektronen in den Schaltkreisen den Lichtschwingungen unmittelbar folgen? Wie schnell werden sie auf das Drücken eines „licht-basierten“ Knopfes reagieren? Oder, ganz grundsätzlich gefragt: wie schnell sprechen Elektronen, die in Atomen, Molekülen oder Festkörpern ge-bunden sind, auf die Einstrahlung von Licht an?

Jetzt hat ein internationales Wissenschaft-lerteam unter der Leitung von Dr. Eleftherios Goulielmakis, Leiter der Forschungsgruppe „Attoelectronics“ am Max-Planck-Institut für Quantenoptik, zusammen mit Forschern der Texas A&M University (USA) und der Staatlichen Lomonossow Universität Moskau (Russ-land) erstmals einen solchen Verzögerungseffekt gemessen. Dabei regten sie mit optischen Attosekunden-Lichtpulsen Krypton-Atome an und beobachteten, dass es ungefähr 100 Atto-sekunden dauert, bis sich die Reaktion der Elektronen auf die elektromagnetischen Kräfte des Lichtes bemerkbar macht. (Nature, 4. Februar 2016, DOI: 10.1038/nature16528)

Nach den Vorhersagen der Quantenmechanik benötigen selbst die leichtesten Teilchen außerhalb des Atomkerns, die Elektronen, eine bestimmte, wenn auch sehr kurze Zeitspanne, um auf die Kräf-te von Licht zu reagieren. Dabei handelt es sich nur um einige 10 oder 100 Attosekunden (1 as ist ein Milliardstel von einer milliardstel Sekunde), weshalb dieser Prozess bislang als unmessbar schnell galt.

„Eine Voraussetzung dafür, ein so kurzes Ereignis einzufangen, ist ein Lichtblitz, der die Elektronen extrem schnell in Bewegung versetzt – im Fachjargon „polarisiert“ – und so ihre Reaktionszeit testet“, erklärt Dr. Mohammed Hassan aus der Forschungsgruppe von Dr. Goulielmakis. So einen Lichtblitz stellen die Wissenschaftler mit einem sogenannten „light-field synthesizer“ her.

Dabei manipulieren sie die Eigenschaften des sichtbaren, nah-infraroten und ultravioletten Lichtes so, dass sie daraus dann einen Lichtpuls im sichtbaren Bereich mit einer Länge von nur 380 Attosekunden zusammensetzen können. Die Pulse sind so kurz, dass sie kaum mehr als eine halbe Schwingung des Lichtfeldes mit sich führen und sind damit die kürzesten je im sichtbaren Bereich erzeugten Pulse. „Wir können sichtbares Licht nicht nur mit Attosekunden-Präzision manipulieren, sondern seine Wellen auch auf Attosekunden-Zeitintervalle beschränken“, erläutert Dr. Tran Trung Luu, Wissenschaftler im Team von Dr. Gouliemakis.

Mit diesem neuen Werkzeug verfügten die Wissenschaftler über eine Methode, Krypton-Atome mit optischen Attosekunden-Pulsen anzuregen. Durch Variation von Intensität und Phase der jeweiligen Pulse erreichten sie, dass in verschiedenen Experimenten leicht unterschiedliche Kräfte auf die Elektronen in den Atomen wirkten. Anhand der daraufhin von den Elektronen emittierten Vakuum-Ultraviolett-Strahlung konnten sie erkennen, wie die Elektronen darauf reagieren. Daraus konnten sie ableiten, dass es etwa 100 Attosekunden dauert, bis die Elektronen auf die Kraft des Lichtes ansprechen.

“Unsere Untersuchung setzt einen Schlussstrich unter die Jahrzehnte währende Debatte über die fundamentale Dynamik der Licht-Materie-Wechselwirkung. In den letzten Dekaden waren wir bereits in der Lage, sowohl die Drehbewegungen als auch die Kernbewegungen in Molekülen mit der Femtosekundentechnologie aufzudecken. Jetzt können wir erstmals auch die Reaktion der in den Atomen gebundenen Elektronen in Echtzeit verfolgen“, betont Dr. Goulielmakis. „Aber gleichzeitig stehen wir am Beginn einer neuen Epoche, in der wir Materie über die Beeinflussung von Elektronen untersuchen und manipulieren werden.“

Einer der nächsten Schritte, die Goulielmakis und sein Team planen, ist die Ausdehnung dieser Untersuchungen auf die Elektronendynamik in Festkörpern. „Damit werden wir herausfinden, auf welchem Weg wir am besten neuartige ultraschnelle Elektronik und Photonik realisieren können, die auf Zeitskalen von wenigen Femtosekunden (1 fs entspricht 10hoch-15 s) und mit Petahertz-Taktfrequenzen (10hoch15 Hz) arbeiten“, führt Goulielmakis aus. Olivia Meyer-Streng

Originalveröffentlichung:
M. Th. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis
Optical attosecond pulses and tracking the nonlinear response of bound electrons
Nature, 4. Februar 2016, DOI: 10.1038/nature16528

Kontakt:
Dr. Eleftherios Goulielmakis
ERC Forschungsgruppe Attoelectronics
Max-Planck-Institut für Quantenoptik
Labor für Attosekundenphysik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -632 /Fax: -200
E-Mail: Eleftherios.Goulielmakis@mpq.mpg.de
www.attoworld.de/goulielmakis-group

Dr. Olivia Meyer-Streng
Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, D-85748 Garching
Telefon: +49-89-32905-213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics